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Abstract. MATCRO-Soy is an eco-physiological process-based crop model for soybean (Glycine max L. (Merr.)). It was
developed by modifying the parameters of MATCRO-Rice. The original model, MATCRO-RIice, integrates crop growth
processes with a land surface model. These modifications were made using data from literature and field experiments across
the world. The reliability of the model was validated extensively by observed soybean yield data across the global, national,
and grid cell levels. A moderate correlation was observed between the MATCRO-Soy and FAOSTAT yield data with
correlation coefficients of 0.81 (p < 0.001) for the global average yield and 0.512 (p < 0.01) for the global average detrended
yield over a 34-year period (1981-2014). Furthermore, the grid-cell level validation revealed that 71 % of the grid cells in the
global yield map exhibited a statistically significant correlation between the MATCRO-Soy simulated yield and the reference
data derived from observational records. These results highlight the model’s ability to reproduce soybean yield under different
environmental conditions, integrating soil water availability and nitrogen fertilizer. MATCRO-soy could enhance our
understanding of crop physiology, especially, crop response to climate change and reduce uncertainty in climate change
impacts on soybeans.

1 Introduction

Crop growth models have been widely used for yield estimation, agricultural management practice optimization, climate
change impact evaluation, and informing decision-making about food security strategies (Adeboye et al., 2021; Cuddington
et al., 2013; Hoogenboom, 2000). Given the significant impact of weather variability on global yield changes (Milller et al.,
2017; Ray et al., 2015), process-based models can represent physiological processes influenced by key climate factors on the
long-term impacts of climate on yield productivity (Boote et al., 2013; Cuddington et al., 2013; Fodor et al., 2017; Jones et al.,
2017; Marin et al., 2014, Stdckle and Kemanian, 2020). Process-based models explicitly incorporate crucial eco-physiological
processes of photosynthesis and stomatal conductance, improving predictions under varying climate scenarios compared with
mechanistic crop models that focus on the direct relationship between absorbed radiation and assimilation through radiation
use efficiency (Jin et al., 2018). Hence, crop models are useful for capturing the complexity of soil-crop-climate interactions
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for ensuring food security, optimizing yields, promoting sustainability, and planning adaptation strategies (Garcia-Tejero et
al., 2011). Global-scale simulations are essential to enhance these efforts by understanding interactions between physiological
processes and environmental factors, supporting adaptive management practices and strengthening agricultural resilience.

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has examined the performance of global
gridded crop models (GGCMs) in simulating the potential impact of climate change on crop yield (Muller et al., 2017; Kothari
et al., 2022). AgMIP efforts have demonstrated that the estimated impacts of environmental factors using a GGCM on crop
yields generally align with measurements and that a model ensemble reduces uncertainty (Elliott et al., 2015). However, yield
change under future climate change scenarios shows inconsistent results and greater variability in soybean than in other crops
due because of model discrepancies (Jagermeyr et al. 2021). Despite being a major crop, soybean (Glycine max L. (Merr.)),
has been studied less extensively than other crops in terms of crop response to changing environments (Ruane et al., 2017 ;
Kothari et al., 2022). Therefore, the development of the new soybean model is crucial for reducing uncertainties in climate
change impact assessments.

It is important to utilize a diverse type of crop models and ensure model diversity to accurately understand the uncertainties
of simulations, as relying on a single model can lead to biased results. To our knowledge, only five process-based models for
global-scale soybean yield estimation with leaf-level photosynthesis and stomatal conductance parameters, including LPJ-
GUESS (Ma et al., 2022), LPJmL (Wirth et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2 (Sakurai et al., 2014),
and JULES (Leung et al., 2020), making this approach remains relatively uncommon. Thus, further development and validation
of process-based models that incorporate leaf-level photosynthesis and stomatal conductance parameters are essential.

MATCRO (Masutomi et al., 2016a), is an ecosystem process-based model for crops embedded into the land surface model
of minimal advanced treatments of surface interaction and runoff (MATSIRO; Takata et al., 2003) with a crop growth model
for rice, which is further explained in Section 2. MATCRO-Rice uses state variables to exchange information (e.g. temperature,
soil moisture, transpiration, leaf area index, and photosynthesis rate) between the land surface model and crop growth model.
Crop growth mechanisms that consider photosynthesis and stomatal conductance, which are widely used to assess the impact
of greenhouse gases on carbon and water fluxes (e.g. ozone) in Masutomi et al. (2019), have been incorporated. Furthermore,
MATCRO-Rice has been applied at the regional scale, and it has been utilized to measure climate impacts, which are important
for developing adaptation strategies (Kinose and Masutomi, 2020; Masutomi, et al., 2016b).

We developed a new process-based model for soybean (MATCRO-Soy v.1) that incorporates diverse biological processes
and environmental interactions that drive plant growth and adaptation to changing conditions. Adapted from MATCRO Rice,
this model is applied for soybeans by parameterizing key processes using experimental data and findings from the literature.
The current version of MATCRO-Soy (v.1) was evaluated in a global-scale simulation, following a calibration process that
considered essential photosynthesis mechanisms. This paper presents the model description in Section 2, the calibration process
in Section 3, and the model evaluation in Sections 4 and 5.

2 Model Description

MATCRO-Soy is based on MATCRO-Rice, a process-based model of rice growth and yield, which has been modified for use
in soybeans. MATCRO-Rice is initially a combined land surface and crop growth model used to explore land-atmosphere
interaction in rice fields. Unlike the MATCRO-Rice v.1 version, MATCRO-Soy focuses on yield simulation only and omits
the calculation of sensible and latent heat fluxes in the energy balance to reduce computational complexity while maintaining
accuracy in simulating soybean growth and yield.
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2.1 Overview of MATCRO-Soy

MATCRO-Soy includes three main modules: phenology, photosynthesis, and carbon partitioning (Figure 1). The
photosynthesis and carbon partitioning modules are closely linked with the carbon allocation driven by photosynthetic activity.
The phenology module serves as a time dimension based on heat unit accumulation and directs the progression of the processes
of carbon assimilation and partitioning by monitoring plant developmental stages from sowing to harvest. The phenology
module simulates developmental stages based on developmental rate from sowing to harvest and influences key processes such
as glucose production and allocation across plant organs. The photosynthesis module includes the absorbed photosynthetically
active radiation (PAR) in the leaf canopy following the concept of de Pury and Farquhar (1997) to produce the net primary
product (NPP). These photosynthesis products are stored in glucose and starch reserves. The carbon partitioning module
distributes the glucose into each organ (i.e. leaf, stem, root, and storage organ) following the method proposed by the school
of De Wit used in MACROS (de Vries et al., 1989). MATCRO accounts for leaf senescence as it influences nutrient cycling,
crop productivity, and the leaf area index, which plays an important role in canopy photosynthesis. Leaf senescence is also
driven by the phenology module. MATCRO incorporates the amount of nitrogen per leaf area (specific leaf nitrogen) as a key
determinant of photosynthetic capacity. Root depth can affect photosynthesis indirectly through the plant's ability to access
water and nutrients from soil layers, further influencing plant growth within the model framework.

Meteorological data
Crop calendar (atmospheric CO,, specific humidity, Soybean Soil type Nnroggn fertilizer
precipitation, air temperature, wind rainfed/irrigated input
INPUT
velocity, surface pressure)
Protosynthesis ¢ | Ve ||
Growing degree
days for
flowering and Net Primary Product :
seed filling stage =Y Photosynthesis
SRR o —
MODEL Growing | @ moo—— T : Specific leaf
L—» degreedays —» L.~ = F----4 nitre il
8 ogen
for maturity
Phenological development Seed-
pod ratio
Leaf
Senescence
Leaf Stem Root Storage :
Carbon partitioning
\ 4 A4
/ / 7
/ Soyyieldin / /Soyyieldin /
ouTPuT rainfed / / irrigated l/

/ / input/output data D:I parameterized ———3 direct relationship

process

|:| process :] - T > ndiectrelationship

Figure 1. Flowchart diagram of soybean yield simulation by MATCRO-Soy.

The input data consisted of environmental variables obtained from meteorological forcings, soil type classifications,
nitrogen fertilizer applications, and agricultural management practices such as irrigation and seed sowing. These inputs are
crucial for setting the initial conditions and boundary parameters for the simulations. The output of the MATCRO is the crop
yield (kg ha'l) estimated for both irrigated and rainfed conditions on the basis of soil-crop interactions. First, we processed the
parameterized growing degree days for maturity using crop calendar data to estimate the harvest time in the phenology module
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(see section 2.2). The photosynthesis module includes limiting factors such as nitrogen fertilization and water stress, as detailed
in Section 2.3. Then, the module was calibrated (Section 2.4). We conducted a parameterization process encompassing
phenological development, carbon partitioning, and photosynthesis limited by water stress and nitrogen uptake. The crop yield
was estimated using the parameterized seed-pod ratio (see section 2.5). The adjusted parameters in MATCRO-Soy are
described in Section 2.6 where the key dynamic variables are parameterized over time to ensure reliable carbon assimilation
in soybean. This comprehensive approach allows MATCRO to account for complex interactions between environmental
conditions, crop physiology, and management practices, providing a robust framework for predicting crop yield and assessing
agricultural productivity.

2.2 Crop phenological development

Phenological development defines the timing of developmental events based on environmental inputs. MATCRO calculates
crop developmental stages (DV'S) using an index indicating the sowing time (DVS=0) to maturation time (DVS=1) on the basis
of the integral of the temperature required to exceed the phenological changes. The module uses a formulation based on Bouman
et al. (2001) as outlined in Equations (1) to (4).

DVS = GDD/GDD,, 1)

GDD = [ DVRdt' )

GDD,, = [ DVRdt’ (3)
0, Ty <Tp | T > Th

DVR = perry o @
W, T, <Tp <Th

where GDD and GDD,, indicate the growing degree days (°C days) used to estimate the development of plants during the
growing season at time t and at maturity, respectively. DVR represents the developmental rate at t, whereas T,,, represents the
temperature at t. The parameters T, T,, and T, (°C) are crop-specific and represent the minimum, optimum, and maximum
temperatures for crop development, respectively.

The impact of temperature on phenological stages varies for each crop stage as Boote et al. (1998) observed that cardinal
temperatures (T, Ty, T,) may differ for vegetative and reproductive stages. We follow Vries et al. (1989) during the growing
season to simplify the calculation input and due to the lack of more detailed data in each phenological stage. This study
parameterized the developmental stages at the flowering (DV'S), seed filling (DVS), and maturation (DVS,,) stages on the
basis of the experimental datasets by calculating the mean, values listed in Table 2. MATCRO uses these DV'S parameters to
define the period of leaf dry weight loss due to leaf senescence and the remobilization of starch reserves from the stem
(Masutomi et al. 2016a). We assume that this phenological time in soybean is in the middle of the flowering and seed filling
stage parameterized in this study as leaf loss started within those periods.

2.3 Carbon assimilation process

In the photosynthesis module of MATCRO-Soy, carbon assimilation is based on the leaf-level photosynthesis calculations in
sunlit and shaded conditions (Dai et al., 2004) to predict canopy photosynthesis. The calculation includes the stomatal
conductance response to relative humidity (Collatz et al., 1991). The net carbon assimilation (4,,) in MATCRO is calculated
using the Farquhar model as further described in Masutomi et al. (2016a), expressed in Eq. (5).
A, = f(PAR' Pa, Tleaf'COZIeaf' Vemaxs BBa'BBb) (5)

A, (mol(CO2) m2s?) represents net carbon assimilation that contributes to net primary product for biomass growth. It is a
function of the intensity of absorbed photosynthetic active radiation (PAR, in mol(photon) m2s), air pressure (P,, in Pa), leaf
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temperature (Tjeqy, in K), CO; concentration at the substomatal chamber (CO;eqf, in Pa(CO2) Pa(Air)™), maximum Rubisco
activity (V.max, in mol(COz) m2s?), the slope (BB,, in mol(H.0)ms?) and intercept (BB, in mol(H.0) m2s?) of Ball-Berry
model of the relationship between crop assimilation, stomatal conductance per unit leaf area, relative humidity at the leaf
surface, and ambient CO, concentration (Ball, 1988). In this study, we assume the leaf temperature is the same as air temperature
to reduce the complexity of the calculation.

Rubisco activity (V.max) 1S @ key variable used to assess the carbon rate entering the photosynthetic pathway, as it catalyzes
the crucial initial step of RuBP (Ribulose-1,5-bisphosphate) carboxylation in photosynthetic carbon assimilation for C3 plants
(Sage, 2002; Xu et al., 2022). In MATCRO, V_hax is calculated as follows:

Vemax = ctop exp(—K,LAI) (6)

Vetop = max(aSLN? + bSLN + ¢, Vetopmax ) )

V.max 1S the Rubisco activity at the top of the canopy (umol(CO2) m? s1) limited by the exponential value of vertical distribution
of leaf nitrogen (K,) and leaf area index (LAI, in m? m2). We determined the Vetop for photosynthetic rate limited by the specific
leaf nitrogen (SLN) in Eq. (7) for soybean using the relationship between two parameters of rubisco activity and leaf nitrogen
from experiments summarized from Ainsworth et al. (2014) in the reproductive stage and Qiang et al. (2022) in the vegetative
stage. This relationship is empirically represented with a polynomial quadratic equation limited by maximum value of Rubisco
activity at the top canopy (Veop. in pmol(CO2) m?s™). a, b, ¢ are quadratic coefficient, linear coefficient, and constant
respectively from the relationship of both variables where the data has been digitized from WebPlotDigitizer (Rohatgi, 2023).

MATCRO considers nitrogen fertilization input denoted as Ny, (unit: kg(N) ha*) which influences the amount of specific
leaf nitrogen (SLN, g(N) m), particularly under conditions of limited nitrogen availability (Menza et al., 2023; Thies et al.,
1995;. The change in SLN over the growing period follows the study of (Menza et al., 2023) which measured nitrogen
fertilization treatments, as described Eq. (8) and (9).

( SLNy, + SH=SIo)OVS=SIN) i pys < SLNy,
X1

(SLNy,~SLNy1)(DVS—-DVSy)

(DVSF-SLNx1) , if SLNx; < DVS < DVS;

(Y—SLNy,)(DVS—DVSs) . ®)
, If DVSf < DVS < DVS;
(pvss—Dvsy)

(SLNyo-Y)(DVS—DVS;)
(DVSy;—DVSs)
SLNy3'h—SLNy3'l
* Nfert (9)

SLN values vary across different phenological stages, with the developmental stage (DVS) value of soybean growth ranges
from O (sow) to 1 (harvest). We define DVS;, DVS,, DVS,,, and SLNy, as the start of flowering, seed filling, maturity time, and
the point where the SLN pattern started to changes with the parameterized values of 0.4, 0.659, 1, and 0.15 respectively. These
growth stages are parameterized based on experimental datasets and align with study from Irmak et al. (2013) using the growth
stage classification by Fehr and Caviness (1977). SLN primarily depends on nitrogen derived from biological fixation and soil
nitrogen, either from natural sources or applied fertilizers. Nitrogen fixation is implicitly captured through SLN that influence
Vemax 1N EQ. (7) and (8), while the effect of applied fertilizers in Eq. (8) and (9).

SLNy, +
SLN = {
Y +

| SLNyo +

, if DVS, < DVS < DVS,,

Y = SLNy3‘l +

fertmax

2.4 Crop growth dynamics

The products of photosynthesis contribute to glucose reserves, which provide energy for growth during various developmental
stages. The crop growth dynamics include a carbon biomass partitioning module to calculate the dry weight of each soybean
organ (Wo,gan in kgha). This variable is the accumulated value of growth rate of dry weight (G,ygan in kg ha™* s) during the
time from emergence to harvest. Further details on this module can be found in Masutomi et al. (2016a).
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Worgan = f(Gorgan) (10)

We calculate the W, in each soybean organ (i.e. leaf, stem, pod including the seed, glucose reserves and starch). Growth
rate of the dry weight (Gog.n) is calculated based on the parameters of conversion factor of dry weight from glucose to organ
(Fgru—organ In kgha™(kg ha*)™) for leaf, stem, pod, root, and starch (listed in Table 1), and ratio of glucose partitioned to organ
(Porgan in kg ha''s™) for shoot, leaf, and pod (listed in Table 2). G4,y for each organ and storage, leaf, pod, root, stem, and
starch, are expressed below:

Gglu = f(Wleafnglu'Rglu) (11)
Glear= GgiuPshootP lea glu-lear (12)
Gstem = G giuPshoot(Prear— Ppod) X (1 = fstaret) Fatu-stem (13)
Gpoad = GotuPsnoopoaFeiu-pod (14)
Groor = Gglu(1 - Pshoot)Fglu—root (15)
Gstarch = GeiuPshood Prear— Ppod) fstarchFetu-starch (16)

Gy, is the amount of glucose partitioned to soybean organ and reserve derived from function of dry weight of leaf (W4 in kg
ha'*), net carbon assimilation in glucose form (4, in kg(CH20) ha™s™), and the remobilization from starch reserve in the stem
after conversion to glucose (Rgy,, in kg ha's™). Ay, is A, that has been already converted using the conversion factor from CO,
to glucose using the value of 1.08x10° [kg ha h™}(mol m2s2)] that is the physical and chemical constant for the conversion.
Ry, is the remobilization from starch reserve in the stem after converted to glucose using ratio of remobilization value. This
Ry, is subtracted from the dry weight of starch reserves (Wi,cx)- fuwarcn [KQ ha™(kg ha?)™] is the fraction of glucose allocated
to starch reserves calculated in stem dry weight loss. Each growth rate of dry weight (G,,.,,) is calculated based on the
parameters conversion factor of dry weight (Fy,—rgan) @nd ratio of glucose partitioned to organ (P,,44r) Value as follow in Eq
(17) - (29):

1= Proor, If DVS <O
1-Pyo0t (DVSy—DVS)

Pshoor = Vs, , if 0 < DVS < DVS,, (17)
1, if DVS = DVS,,
DVS .
( PleafO + m (Pleufl - Pleafo)' lf DVS < DVSleafl
= (P eaf2~Plea ) .

Piear {Pleafz - m (DVSjearz — DVS), if DVSjeqr1 < DVS < DVSjear (18)

L 0, if DVS = DVSpar2

0, if DVS < DVS,oa1
DVS—DVSpo41 .

Prod =\ 575,000 -DVSpons” if DVSpoa1 < DVS < DVSpo4a (19)

1, if DVS = DVSpoa2
The glucose partitioned in each organ is adjusted during the developmental stage using experimental data in the calibration
process, further described in Section 3. However, the dry weight of leaf in this module is reduced due to leaf senescence by
calculating loss of leaf dry weight (L., in kg ha't s1) derived from the calibration of partitioned glucose ratio to the ratio of
dead leaf (Pyjeqr in's™), as outlined in Eq. (20) and (21).

Lo { 0 , if DVS < DVSgeadieart (20)
feaf Pdleaf(VVleaf - ngu)' if DVS = DVSdeadleafl
(DVS-DVS, )
Pdleaf = Pdeadleafz tradtial) (21)

(1=DVSgeaieaf1)
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Then we calculate the leaf area index (LAI) that serves as a parameter to assess the leaf surface area relative to the ground area.
It directly influences the plant ability to intercept solar radiation for photosynthesis.

LAl is computed using the adjusted specific leaf weight (SLW in kg ha?) expressed as:

LAI = WieartWgtu (22)
SLW

LAl is calculated from the estimated leaf weight (Wi.,s, in kg ha®) and glucose weight (W, in kg ha?) divided with
parameterized SLW, a key parameter that links leaf dry weight to surface area. The value of SLW dynamically changed during
the developmental stage following exponential relationship:

SLW = SLW,,.,, + (SLW i, — SLW,,,...) exp(—SLW,DV'S) (23)
SIW paxy SLW i, and SLW, represent the maximum, minimum, and slope parameters, respectively, that define the values
observed in the exponential relationship based on experimental dataset in Table 3. In addition to LAI, photosynthesis is also
indirectly affected by the root depth (z,,,. in m) that determines the plant capacity for water and nutrient uptake. Root depth is
calculated as follow:

Zroot = f (rmatv Zmatma){) (24)
Z,00¢ 1S the accumulative value from growth rate of root depth (7,,,, in mm day*) limited by maximum possible root depth
(Zrootmax: 1N Meter).

2.5 Soybean yield estimation

The soybean yield is calculated from the pod dry weight at harvest (W, oqnarvest) Via the seed-pod ratio (SR) in MATCRO-
Soy. The yield is further affected by water stress (f,yseress) in EQ. (25).
Yield = f(Wpodharvest:SR' fwstress:T) (25)
The yield was calculated using the parameter SR, which is the ratio of yield (seed, kg ha?) to the storage organ of the pod
(Wpodanarvest: kg ha™) at harvest time and was derived from experimental datasets in Table 3. T is the temperature (Kelvin) that
limits heat and cold damage to the yield of soybean. The water stress factor (f,,s:ress) Was determined on the basis of the
fraction of available soil water at the soil layer -i (FAW;) over crop yield, based on a previous study on the relationship between
the soybean transpiration ratio and transpirable soil water conducted by Ray and Sinclair (1998), given in Eq (26).

1
— FAW;, if FAW; < 0.5
fwstress = {0'5 . ' f ' (26)
1, if FAW; > 0.5
The value of f,,s:ress depends on soil water availability at soil layer-i (FAW;), which is the estimated soil water content based
on the water flux between the soil layers (Masutomi et al., 2016a) calculated via Eq. (27):

_ WSLi-WSLwiy
FAW, = WSh=Wstwae @7)
WSLEc—WSLy it

where WSL;, WSL,,.;:, and WSLg represent the water level in the soil layer -i, wilting point, and field capacity, respectively.
Avalue of f,,s¢ess €qual to 1 indicates no water stress as the fraction of available soil water is adequate for crop growth. Hence,
yield is calculated as the potential yield constrained by water stress.

2.6 Soybean-specific parameters

MATCRO-Soy shares several parameters with MATCRO-Rice as both are C3 species. However, soybean differs from
cereal crops because of its nitrogen-fixing ability. This characteristic is represented through specific leaf nitrogen during the
crop growth, as described in Egs. (8) and (9). The crop-specific parameters reflect the unique physiological and chemical
processes involved in soybean growth. but still align with the general framework of MATCRO-Rice. Key parameter
adjustments are outlined in Table 1 as MATCRO employs a set of specific parameters to simulate crop growth and yield.
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These parameters include factors related to carbon allocation, root growth characteristics, and crop development based on
cardinal temperatures. By accurately representing the unique physiological and biochemical characteristics of soybeans, these
parameters contribute to the ability of the model to predict crop yield with greater precision.

MATCRO-Soy aims for simulations applicable to a global scale; hence, it uses a single global parameterization as a
standardized set of parameters applied worldwide. It uses a unified approach for modelling crop behaviour across different
regions. It was assumed that the parameter values from the different treatments and cultivars were independent. Table 2 contains
a list of variables parameterized within the model, including the glucose partitioning, nitrogen parameters, and photosynthetic
capacity. Through the parameterization of these variables, the model can be adapted for various growing conditions and
employed to assess the sensitivity of crop performance to different factors. These parameters are commonly used to evaluate
the crop model sensitivity to environmental changes and require further attention, as highlighted by simulations from other
crop model as wells (Battisti et al., 2018).

Table 1. Crop-specific parameters used for MATCRO-Soy

Parameters Description Value Units Source Eq.
Ftu-tear conversion factor of dry weight from glucose to leaf 0.871 kg ha! (kgha')''  Penning de Vries et al. (1989) (12)
Fyiu—stem conversion factor of dry weight from glucose to stem 0.810 kg ha! (kgha'y'  Penning de Vries et al. (1989) (13)
Fgtu-root conversion factor of dry weight from glucose to root 0.857 kg ha! (kgha')'  Penning de Vries et al. (1989) (15)
Fytu-poa conversion factor of dry weight from glucose to pod 0.759 kg ha! (kgha')''  Penning de Vries et al. (1989) (14)

Fiu-starch carbon fraction in the dry matter of starch 0.9 kg ha'! (kgha')!  Physical and chemical constant (15)
Ky vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) 6)
Traot rate of root depth increase 0.03 mm day g;c:ér?;gg) al. (2018) ; Nakano  (24)
Zrootmax maximum root depth 1.7 m Penning de Vries et al. (1989) (24)
T, base temperature for crop development 10 °C Penning de Vries et al. (1989) O]

Ty highest temperature for crop development 34 °C Penning de Vries et al. (1989) 4

T, optimum temperature for crop development 27 °C Penning de Vries et al. (1989) )

255 Table 2. Parameterized variables for soybean in MATCRO

Variables Value Units Description
a -18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7)
b 114.33 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7)
c -73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (7)
DVSgeadieart 0.6 - 15'DVS point where the dead leaf ratio pattern changes
DVSgeadiear2 1 - 2" DVS point where the dead leaf ratio pattern changes
DVS; 0.4 - developmental stage on initial flowering stage
DVSiear 0.25 - 1t DVS point where the leaf partitioning pattern changes
DVSiear> 0.659 - 2" DVS point where the leaf partitioning pattern changes
DVS,, 1 - developmental stage at maturity time
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Variables Value Units Description
DVSpoa1 0.53 - 1t DVS point where the pod partitioning pattern changes
DVSpoaz 0.72 - 2" DVS point where the pod partitioning pattern changes
DVS, 0.659 - developmental stage to start seed filling stage
DVSginv1 0.4 - 15t DVS point where the specific leaf nitrogen changes along with DVS
DVSsin2 0.4 - 2n DVS point where the specific leaf nitrogen changes along with DVS
DVSgins 0.659 - 3 DVS point where the specific leaf nitrogen changes along with DVS
fstarch 0.18 - fraction of glucose allocated to starch reserves
SR 0.68 - seed-pod ratio (SR) accounting harvest index from storage organ
Neerenign 300 kgNha™! nitrogen fertilizer value used in high nitrogen fertilizer in Menza et al. (2023)
Piearo 0.38 - glucose partitioning ratio of leaf toward shoot in the initial DVS point
Preas1 0.6 - glucose partitioning ratio of leaf toward shoot in the 1% DVS point
Preas> 0 - glucose partitioning ratio of leaf toward shoot in the 2" DVS point
Pieadieart 0 st dead leaf ratio value in the 1% DVS point
Pieadtear? 0.000001 st dead leaf ratio value the 2" DVS point
SLNy, 0.75 gNm™2 initial specific leaf nitrogen
SLNy, 2.25 gNm™2 specific leaf nitrogen value in the 15t DVS point
SLNy, 1.7 gNm™2 specific leaf nitrogen value in the 2" DVS point
SLNy3p 0.75 gNm™2 specific leaf nitrogen value in the 3" DVS point when using high nitrogen fertilizer
SLNy;, 1.8 gNm™2 specific leaf nitrogen value in the 3" DVS point when using low nitrogen fertilizer
SLW,ax 600 kgm™? maximum specific leaf weight
SLW in 250 kgm™2 minimum specific leaf weight
SLW, 2.5 - exponential slope of specific leaf weight to the developmental stage
Vetopmax 103 umol(C02)m™2s™1 maximum Rubisco capacity at the canopy top in Eq. (7)

3 Model Calibration

The model parameters were tuned to represent the observed phenology and seasonality of biomass development. Once
calibration is complete, the model continues to simulate crop growth, which encompasses phenological development, carbon
260 assimilation, assimilate partitioning, and crop yield. We conducted calibrations from various environmental conditions and
soybean varieties documented in previous experimental studies as detailed in 3.1 and Table 3. The model calibration included
parameterizing the dynamic biomass growth for each organ, leaf senescence, and specific leaf weight denoted as F,,.4,,, during
the developmental stage denoted as DV'S. Other calibrations using the experimental dataset included the phenological stage,
and the seed-pod ratio (SR). The crucial phenological stage (e.g. flowering and seed filling) was calculated as the average value
265 of the reported values in the experimental dataset. MATCRO applies this crop growth module following the method proposed
by the school of de Wit used in MACROS (Vries et al., 1989), and compares biomass growth with the observed values during
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developmental stages. Shifts in partitioning and growth patterns were identified and used as reference points in the
parameterization.

3.1 Description of the site data for calibration

The calibration process used experimental datasets from previous studies collected from field experiments across six different
sites in four countries: Frederico Westphalen and Piracicaba (Brazil), Ya’an (China), Champaign (United States of America,
US), Morioka and Tsukubamirai (Japan), as seen in Table 3. The soybean cultivars grown at these experimental sites
represented different maturity groups. A variety of management practices related to water management and nutrients were
utilized in the experiments. Nitrogen fertilizers were applied in most experiments, but mineral nitrogen was used in the soil at
sites in Brazil and the US.

Weather data were derived from the records at the meteorological station nearest to the experimental site. The climates at
the respective sites were as follows. The ranges of daily mean air temperatures during the growing season was 18-30°C in
Frederico Westphalen (Brazil), 19-31 °C in Piracicaba (Brazil), 17-27 °C in Tsukubamirai (Japan), 14-25 °C in Morioka (Japan),
18-26 °C in Ya’an (China), and 15-28 °C in Champaign (US). The seasonal precipitation (mm) for the sites were 1669 mm in
Frederico Westphalen (Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka (Japan), 865 mm in Tsukubamirai (Japan),
1012 mm in Ya’an (China), and 787 mm in Champaign (US). The amount of solar radiation also differed among the
experimental sites where China received lowest solar radiation and Brazil received highest solar radiation during the
experimental period (Supplementary file Figure S1). These data represent diverse climatic conditions in soybean-producing
countries. The field data used for calibration were collected across multiple crop seasons, specifically from 2002, 2003 to 2007
and from 2013 to 2016. These time periods were expected to capture the current climatic and environmental variability.

Table 3. Information on field-experimental data of location, crop season, variety, maturity group, water management, and nitrogen fertilizer,
as well as the number of experiments for calibrating glucose partitioning ratio and evaluating the soybean yield simulations.

Water management,

Location Crop season Variety (RMG*) Nitrogen fertilizer Experiments (n) Reference
@Nm?)
Brazil (Frederico 2013-2014 BRS284 (6) Rainfed, 0 5 (Battisti et al., 2017a)
Westphalen)
Brazil (Piracicaba) 2013-2014 BRS284 (6) Irrigated and Rainfed, 0 6 (Battisti et al., 2017a)
China (Ya’an) 2014 15 cultivars (5-8) Irrigated, NA 15 (Wu et al., 2019)
2014-2016 Texuanl3 (7), 9
Jiuyuehang (5), Nandoul2 (6)
United States 2002, 2004- Pioneer93B15 (3) Rainfed, 0 8 (Morgan et al., 2005;
(Champaign) 2007 Ainsworth et al., 2007)
Japan (Tsukubamirai) 2013-2015 Enrei (2), Fukuyutaka (4), Rainfed, 25-27 16 (Nakano et al., 2021)
Ryuhou (2)
Japan (Morioka) 2013-2016 Ryuhou (2) Rainfed, 25-30 12 (Kumagai, 2018;

Kumagai, 2021)

*Relative maturity group
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3.2 Biomass partitioning and specific leaf weight

This model represents carbon assimilation by incorporating the carbon fraction in dry matter and glucose allocation to various
plant organs. The glucose ratio for each organ is parameterized based on measurements of leaf weight, leaf senescence, stem
weight, pod weight, and specific leaf weight across different developmental stages. To simulate glucose partitioning, we used
Eqg. (17) — (24) to fit the segmented linear models to the experimental dataset (Figure 2 and Figure 4) and used the parameter
values as shown in Table 2, as this value is used to obtain the average value of soybean partitioning behaviour. The calibrated
glucose partitioning ratio varied across the varieties and environmental conditions and was derived by converting biomass
growth into glucose allocation as outlined in Egs. (11)—(16). However, our parameterization reflected the observation data, as
well as the linear growth of leaves and pods during the developmental stages. The dataset from Morioka (Japan) was not
included in this biomass partitioning. However, it was utilized for seed-pod ratio and phenology parameterization along with
evaluation after the calibration step (Supplementary file Figure S2). The dashed lines in Figure 2 and 3 indicate the estimated
flowering and seed filling stages by calculating the average in all experimental datasets.

Carbon assimilation primarily occurs with subsequent allocation to other parts of the plant. Compared with varieties from
other sites, the soybean varieties observed in the experimental dataset from Tsukubamirai (Japan) tended to have lower
partitioning to the stem during the vegetative stage. The ratio of glucose to leaves in Sichuan (China) was unexpectedly high
near maturity in 2016, resulting in partitioning to pods at a low level due to low temperature and drought conditions. The storage
organ biomass increases in the reproductive stage to produce pods and seeds, whereas the shoot will senesce at the end of the
maturity period. Hence, yield is estimated using seed weight (as determined by the storage organ weight) and the parameterized
seed-pod ratio. Pod partitioning in Champaign (US) tended to occur early in pod initiation in early maturation varieties, and the
dry weight of pods before the seed filling stage is relatively high (Kawasaki et al., 2018). Early pod initiation has also been
observed in the Ryuhou variety in Tsukubamirai in 2013 (Nakano et al., 2021).

@ M)
0.75 0.75

0.50

Leaves/Shoot
Pod/Shoot
o
3

0.25 0.25

0.00 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Developmental Stage (DVS) Developmental Stage (DVS)
site [_] Piracicaba (Brazil) (_) Frederico Westphalen (Brazil) A Tsukubamirai (Japan) —— Champaign (US) > Ya'an (China)

Figure 2. Glucose partitioning ratio to leaves (a) and pod (b) compared with the shoot during the developmental stage (DVS =0 - 1) in the
experimental sites shown by shaped points (square: Piracicaba, circle: Frederico Westphalen, triangle: Tsukubamirai, plus:
Champaign, cross: Ya’an. The red lines are the fitted model of segmented lines used for glucose partitioning in MATCRO-Soy. The
dashed line marks the averaged flowering, seed filling, and harvest time from the experimental datasets.
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Figure 3. Dead leaf ratio (s-1) during the developmental stage (DVS =0 - 1). Similar with Figure 2.

The dead leaf ratio parameter in Figure 3 shows the degree of leaf senescence after the seed filling stage due to the leaf
process. The dead leaf ratio is calculated from the amount of leaf loss observed during the growing season. The specific leaf
weight (SLW) is a significant parameter in crop growth parameterization and has been calibrated to follow the observation data
pattern shown in Figure 4. We used the measured leaf weight and leaf area index data from the experimental datasets described
in 2.4 and Eq. (23) to calculate the ratio of leaf weight to leaf area (SLW) during different phenological stages. These ratios
change over time with distinct values as they vary across different growing seasons and cultivars (Thompson et al., 1996;
Slattery et al., 2017). In the figure, SLW from Champaign (US) was excluded because of discrepancies in the timing of the
measurements in leaf area and leaf weight biomass. While the specific leaf weight varied among the sites, we fit the model of
SLW assuming a saturating exponential function of the developmental stage (red line in Figure 4). This pattern aligns well
with the biological process as SLW initially increases due to rapid biomass accumulation but saturates as leaves mature.

500

Site
] Piracicaba (Brazil)
Q Frederico Westphalen (Brazil)
£ Tsukubamirai (Japan)
|- Ya'an (China)

400

Specific Leaf Weight (kgha™)

300

200

0.00 0.25 0.50 0.75 1.00
Developmental Stage (DVS)

Figure 4. Specific leaf weight (kgha-1) during the developmental stage (DVS =0 - 1). Similar with Figure 2.

4 Model Evaluation Setup

MATCRO was developed in FORTRAN and coupled with the global climate models output, simulated at a spatial
resolution of 0.5° x 0.5° and hourly-daily temporal resolution. The output of the model is gridded crop yield (kg ha?) as stored
in netCDF file format in a global map with one-time harvest simulated in one year. We perform the model evaluation for
global, country, and grid cell levels for 34 years (1981 — 2014) at 0.5° spatial resolution and yearly harvested yield output. The
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accuracy of the simulated yield was assessed using reference global and country-level data from the Food and Agriculture
Organization (FAOSTAT, 2023), while the grid cell level yield was compared with the Global Dataset of Historical Yield
(GDHY) data which is derived from statistical records, FAO data, and remote sensing data (lizumi, 2019).

4.1 Simulation settings and data inputs

The parameters were set as shown in Table 4, covering the period of the sowing year from 1980 to 2014, with a various
planting time across different regions. This model incorporated global daily climate data (86400 s) as input data. While the
simulation framework was inherited from the established MATCRO-Rice v.1 (Masutomi et al. 2016b), several modifications
were made to enhance its applicability at a global scale. Notably, the temporal resolution was adjusted from half-hourly (1800
s) to hourly (3600 s), allowing the model to maintain consistency in capturing critical processes such as diurnal variations in
photosynthesis and transpiration, while optimizing computational efficiency. These adjustments ensured that the model
remained suitable for large-scale simulations while preserving essential physiological processes.

The model simulates soybean yield using input data as described in Table 5. It uses global input data as follows: crop
calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which separates the rainfed and irrigated systems,
atmospheric CO, and climate data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) that provides bias-
adjusted climate input data for historical data (GSWP3-W5ES5 v2.0), soil classification from the Harmonized World Soil
Database (HWSD v1.2), and nitrogen fertilization for C3 fixing crops of the ISIMIP, which is derived from the land use dataset
(Hurtt et al., 2020). We use ISIMIP bias-adjusted data to maintain uniformity in the climate impact data across sectors and
scales in their framework. This dataset, which is provided by ISIMIP, has a spatial resolution of 0.5 °. To determine the growing
degree days for maturity, we considered the phenological maturity time from the GGCMI crop calendar for harvest time and
global ISIMIP climate data over 10 years (2000-2010) to capture the variability shifts in the current evaluation years.

Table 4. Parameter settings for simulation

Variable Value  Unit Description

Yearsow varied Year year of sowing day

DOY sow varied DOY day of year of sowing day

REStime 3600 s time resolution for simulation

RESclimate 86400 s time resolution for climate forcing data

RESwe/mns 0.5 degree spatial resolution north to south or west to east

Soil layer 50 - number of simulated soil layer to calculate soil water content
WSL 10 - soil water content at emergence

Wieafo 1.0 kghat dry weight of leaf at emergence

Wstemo 1.0 kghat dry weight of stem at emergence

Wrooto 1.0 kghat dry weight of root at emergence

Wialuo 0.5 kghat dry weight of glucose reserve at emergence

Za 30 m reference height at which wind speed is observed

Zmax 40 m depth of soil layer

Zt 005 m depth of topsoil layer

Zy 20 m depth from the soil surface to the upper bound of the most bottom layer of soil

Table 5. Data input for MATCRO simulation.
Variable Unit Data source Spatial Resolution
Daily time-step
Precipitation kgm2st 0.5° x 0.5°
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Near-surface specific humidity kg kgt GSWP3 — W5E5 (Kim, 2017; Cuchi et 0.5°x 0.5°
Maximum, minimum, and mean temperature  Kelvin al., 2020; Lange, 2019; Lange et al., 0.5° x 0.5°
Surface downwelling shortwave radiation W m? 2021) 0.5° x 0.5°
Near-surface wind speed ms? 0.5° x 0.5°
Surface air pressure Pa 0.5° % 0.5°
Yearly time-step
Atmospheric CO2 concentration ppm ISIMIP (Biichner and Reyer, 2022) -
Nitrogen fertilizer kg hat ISIMIP (Volkholz and Ostberg, 2022) 0.5° x 0.5°
Constants

Latitude and longitude ° - -

Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5°x0.5°
Sowing time Julian day GGCMI (Jagermeyr et al., 2021) 0.5° x 0.5°
Growing degree days for harvest time °C days Parameterized in this study 0.5° x 0.5°
Soil type - HWSD (Volkholz and Miiller, 2020) 0.5°x 0.5°

4.2 Global yield evaluation methods

In this study, we assessed the statistical relationship between simulated yields and reference data using common metrics of
Pearson correlation coefficient (corr) in Eq (28) with the significancy levels (p-values), agreement between the simulation and
observation using root mean square error (RMSE) in Eq. (29), and bias in Eq. (30) for the time-series yield data.

TR (X=X)(v;-T) (28)

fEZLl(Xi-)?)Z(Yi—V)Z
RMSE = 15,06~ %) (29)

relative bias = %Z?=1|Xi -Y x% (30)
where X; and Y; indicated simulated and observed values in each measurement, while X and Ydenotes the mean of simulated
and observed values for the harvested year annually. The i and n shows the i-th data point and total number of data,
respectively. We use n = 34 years for global-scale data, while output after calibration is evaluated in point-scale using n ranged
from 14-122 of the available experimental datasets.

Furthermore, we evaluated yield fluctuation on the detrended yield and long-term yield trend separately using mean
standard deviation (MSD) and its component to provide more clear interpretation of the model evaluation error (Gauch et al.,
2003; Kobayashi and Salam, 2000) in Eq. (31)

MSD, = SB, + SDSD, + LCS, (31)
Mean squared deviation (MSD,,) is the square of RMSE for long-term yield trend or detrended yield. Detrended yield is
calculated based on the value after yield is reduced by its long-term trend. Its components included mean squared bias (SB,),
difference in the magnitude of fluctuation namely squared difference between standard deviations (SDSD,,), and the lack of
positive correlation weighted by the standard deviations (LCS,,) as proposed by Kobayashi and Salam (2000) calculated in Eq
(32) — (37) below:

corr =

SB, = (X — 7)? (32)
SDSD, = (SDx — SDy)? (33)
SDy = |~ (X — X)? (34)
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SDy = [ETiL,(t —7)? (35)

LCS,, = SDxSDy(1 — corr) (36)
Higher SB,,, SDSD,,, and LCS,, indicate that model failed to simulate mean of the measurement, magnitude of fluctuation

around the mean, and pattern of fluctuation across the n measurements, respectively, of the yield. SDy and SDy, denotes the
standard deviation of simulated (X) and observed values (Y), while LCS,, depends on the correlation coefficient (corr).

5 Model Performance Evaluation

We calculated soybean yield in a global-scale map based on the gridded data of irrigated and rainfed area from MIRCA2000
dataset, which represents global agricultural land use around the year 2000 (Portmann et al., 2010), to get the actual yield
value. We evaluated yield during the period of 1981-2014 as the MIRCA dataset was available within that period. The
simulated yield at the country and global scales for regional comparison was determined by aggregating grid cell data to
compute the mean soybean harvested area within each country grid as described below in Eq (37):

L [(Yield,¢)i(ATea, £)i+(Yield;)(Areai);

Yieldregion = ZEl ?::[((Arear;))i+((Areair))i]( Z

where Yield,.4;0n is the aggregated yield at a given region (country or global-scale) in kgha from the grid cell number (i)
range from 1 to n (total number of grid cells in the region). The estimated yield under rainfed and irrigated conditions are
denoted by Yield,r and Yield;,, respectively. While the soybean rainfed and irrigated area (ha) used in the simulations are
Area,; and Area;,, respectively.

@37)

5.1 Model output yield as evaluated at the global and national scales

Figure 5a shows a time-series comparison from 1981 to 2014 between the global mean yields reported by FAOSTAT and
those simulated by MATCRO-Soy. The results indicated that the model captures the upwards trend in yields over the period
with smaller slope compared with the reported yield data. The correlation coefficient is 0.81, which is significant (p < 0.01).
The errors were 362 kg ha! and 0.15 for the RMSE and relative bias, respectively. Notably, the simulated linear increase
contributed to the higher coefficient correlation for the yield trends.

Figure 5b shows the comparison between the detrended global mean yield observed by FAOSTAT and the simulated value
by MATCRO-Soy after the long-term linear trend across the study period used in the yield trend was removed. The correlation
coefficient decreased to 0.512, which was significant (p < 0.01). The model reproduced the interannual variations well with
an RMSE of 124 kg ha and a relative bias of 0.37. Specifically, according to observations, there were significant yield
reductions in the years 1983, 1988, 2009, and 2012. Among these, the model successfully reproduced the yield reductions in
three years (1983, 1988, and 2012), excluding 2009. These years are reported to have experienced severe droughts, and the
model's ability to capture these events is noteworthy.
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Figure 5. Time-series comparison between simulated yield by MATCRO-Soy and FAOSTAT reported yield data in global long-term trend
(a), and detrended (b) yield during 1981-2014. The correlation for detrended yield is calculated after removing the linear trend. The symbols
**xx %% and * denote p < 0.001, 0.01, and 0.05, respectively.

We evaluated the model performance for 10 major soybean-producing countries, Argentina, Brazil, China, India, Paraguay,
United States, Italy, Russia, Bolivia, and Canada, consisting of 96% of all global soybean production (based on total average
production from 2012 to 2021 in FAOSTAT). Figure 6 compared between the simulated country averaged yields and reported
country averaged yields of FAOSTAT for 1981-2014 with the ellipsoid indicating the distribution of the simulated yield values
within the 90% confidence range. The results indicate that the model reproduces the national average yield levels well in the
top 10 producing countries, as indicated by a correlation coefficient of 0.502 (p < 0.001) and an RMSE of 995 kg ha™.
Significant correlation coefficients were observed for six countries (Argentina, Brazil, India, Italy, Paraguay, and the United
States; see Supplementary file Figure S3 for further evaluation for these six countries). Focusing on the top three producing
countries (the United States, Brazil, and Argentina), which account for 69% of global production, the model's accuracy further
improves, with a correlation coefficient of 0.81 and an RMSE of 362 kg ha™. However, when all countries are considered, the
correlation coefficient decreases to 0.263, although it remains statistically significant. These results demonstrate that the model
achieves particularly high accuracy in reproducing yields for countries with relatively high production levels.
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Figure 6. Comparison between simulated yield by MATCRO-Soy and FAOSTAT of the country mean yield during 1981-2014 in 10 major
soybean producing countries. Ellipsoid shows 90% confidence range of annual yield.

A time series comparison of country averaged yields focusing on the major producing countries is shown in Error!
Reference source not found. An evaluation of the long-term trend (Figure 7a) revealed that MATCRO-Soy effectively
captured the increasing trend. Brazil demonstrated the strongest agreement, followed by Argentina at 0.73 and the United
States at 0.62. For detrended yield (Figure 7b), the interannual variability in Brazil presented the highest correlation coefficient

16



440

445

450

455

460

https://doi.org/10.5194/egusphere-2025-453
Preprint. Discussion started: 21 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

at 0.79, followed that in the United States at 0.6 and that in Paraguay at 0.562. On the other hand, the lowest correlation was
observed for China at 0.136 and Bolivia at -0.107. These findings suggest that the model tends to perform with greater accuracy
for countries with higher production levels, even in time series comparisons at the national level.
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Figure 7. Time-series comparison between simulated yield by MATCRO-Soy (red circle) and FAOSTAT yield (open circle) in 10 top
soybean producer countries during 1981-2014 for long-term yield trend shown by solid line (a) and detrended yield after removing the linear
trend (b). The correlation and RMSE based on yield (a) and detrended yield (b) data. The symbols ***, ** and * denote p < 0.001, 0.01,
and 0.05, respectively. The shading near solid line is the standard error with confidence interval of 95%.

5.2 Temporal trends and variability

Model performance was further assessed with the mean squared deviation (MSD) components for the yield and separated
by yield, long-term yield trend, and detrended yield for both the global (Supplementary file Table S1) and country scales
(Supplementary files Table S2, S3, and S4). Figure 8 shows the source of error based on the MSD components of squared bias
(SB), the sum of the difference in standard deviation (SDSD), and the lack of positive correlation (LCS) in the top 6 soybean-
producing countries. SBs are the primary source of error in countries with high MSDs: Argentina, China, and Paraguay.

The highest MSD in Paraguay was largely driven by SB, with a minor contribution from LCS. In contrast, the lowest MSD
in Brazil was largely driven by SDSD and LCS. The SDSD is the primary contributor to the MSD for Brazil and the United
States, and a small SB was observed in both countries, indicating that the model effectively simulated the mean yield but
poorly captured the trends. These results highlighted the model strength in simulating the mean yield in the top 2 major soybean
producing countries (Brazil and the United States) with the largest soybean-growing areas.
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Figure 8. Mean standard deviation components of squared bias (SB), sum of difference in standard deviation (SDSD), lack of positive
correlation (LCS) for yield error in top 6 soybean producing countries.

5.3 Model performance at the grid-cell level variation

We evaluated MATCRO-Soy at the grid-cell level, by comparing simulated yields with observed ones from Global Dataset
of Historical Yield (GDHY) dataset by lizumi (2019). Figure 9a and b show the simulated and observed yields averaged over
34 years, and Figure 9c shows relative bias between them. Figure 10 shows interannual correlation between simulated and
observed yields for 34 years. The simulated yield was calculated for soybean-growing areas from the MIRCA2000 dataset,
which offers broad spatial coverage where yield data for certain regions, including Canada, Russia, Australia, and many
European and Asian countries, are missing in the GDHY dataset (lizumi and Sakai, 2020). The density plot of the simulated
yield showed more variability than did the GDHY data in Figure 9. However, both datasets exhibited a density peak of
approximately 3,000 kg ha*and the simulated yield mostly overestimated the yield value. Figure 9 a, b, and ¢ also show the
distribution of simulated and observed yields.

The relative bias map (Figure 9¢) highlights that overestimation was prominent in parts of South America (particularly
Argentina) and China, whereas underestimation was observed in South Africa and India. These results aligned with the trends
observed at the national scale, which are influenced by the aggregation process. During aggregation, the national-scale results
represented the average performance across all grid cells, weighted by the number of grids within each region. Most grids were
within a relative bias of -0.2 to 0.2, accounting for 33 % of the total grid area. The grey area was found to be statistically
insignificant. The density plot in simulated yield showed more variability compared to the GDHY data. However, both data
exhibited the density peak around 3,000 kg ha'* and simulated yield mostly overestimated the yield value. The correlation
between the simulated yield and the GDHY dataset for interannual variation after removing the moving-average (Figure 10)
reveals that 71 % of the grid cells are significantly correlated (p < 0.05).
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Figure 9. Global map of 34-year averaged (1981-2014) yield of GDHY dataset (a), simulated by MATCRO-Soy (b), and relative bias (c)
with each density plot distribution. In figure c, grey colour depicts the correlation with no significance (p > 0.05) in the map.
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Figure 10. Time-series correlation between simulated and observed yield in 1981-2014 after removing trends from 5-year moving average
(c). Grey colour depicts the correlation with no significance (p > 0.05) in the map while the red dashed line shows the border of
p = 0.05 for the number of n year (34) in the density distribution plot.

5.4 Model performance at the leaf-level

We simulated the leaf-level variation in Vemax for the United States (largest soybean producing country) at the site scale of the
Champaign for the 2002 growing season using the global parameterization of MATCRO-Soy (Figure 11). These leaf-level
simulated Vemax Values align closely with the observation data from Bernacchi et al. (2005) during the vegetative stage with
some deviations during the flowering to seed-filling stages, as shown by the dashed line in the developmental stage of Figure
11. This alignment highlighted the ability of the model to represent essential photosynthetic processes influenced by leaf
nitrogen content.
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Figure 11. The maximum carboxylation capacity of Rubisco (umol(C02)m~2s~1) during the growing period of simulation using
MATCRO-Soy (black line) and observation data (grey dots) from Bernacchi et al. (2005) in Champaign (US) year 2002.

6 Discussions
6.1 Validation of MATCRO-Soy

In prior studies, soybean yield predictions often faced challenges in capturing crop responses to climatic variables. The
MATCRO-Soy model effectively captures the linear trend in soybean yields, with higher accuracy for long-term trends (corr
= 0.81) than for detrended yields (corr = 0.512), as shown in Figure 5. This result of the global detrended yield is improved
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compared with that of benchmark studies conducted by Muller et al. (2017), indicating less variation among the process-based
models based on its statistical correlation, where another crop model, PRYSBI2, reaches significant correlations of 0.57 (p <
0.050) if trends are not removed. However, the accuracy is enhanced when using site-specific parameters are used, as
demonstrated in regional scale evaluations from previous studies, which were used for parameterization in this global
simulation (Battisti et al., 2017b; Kumagai, 2018, 2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al., 2019). These
studies have shown that integrating factors of cultivar differences, ensembles of multiple crop models, nitrogen content, and
more accurate measurement method allows for a more reliable representation of local growing conditions and climate
variability.

When examining thel0 largest soybean-producing countries, the model performance (Figure 6) has an RMSE of 0.9 ton
ha (average yield of 34 years), which is comparable with the RMSE of another study using LPJ-GUESS coupled with
biological nitrogen fixation (Ma et al., 2022) of approximately 0.8 ton ha* (average yield of 10 years). The grid-cell level
evaluation simulated by MATCRO-Soy, as shown in Figure 9, revealed that 71% of the grid cells were significantly correlated
(p < 0.05) with most grids falling within 0.2—0.6. These findings align with other studies that show that time-series correlations
in GGCM simulated soybean yields range from 0.25 to 0.65 due to discrepancies in benchmark studies (Mller et al., 2017).

The correlation values between yield and detrended yield in Figure 5 and Figure 6 indicate that the increased correlation
in model performance was due to the long-term yield trend. MATCRO-Soy could capture the trend of increased atmospheric
CO; and nitrogen fertilizer inputs, despite of the interannual variability in climate conditions. The MSD calculation revealed
that the sum of the differences in the standard deviation (SDSD) was the major contributor error in Brazil, and Italy within the
10 top soybean producing countries (Supplementary file Table S2). Both countries have small squared biases (SBs), suggesting
that MATCRO-Soy accurately represents the average productivity in despite of the inability to capture the variability or
amplitude of the yield trend over time within the region. Factors such as changes in sowing date, land use, pest management,
cultivar maturity group, and planting density may contribute to discrepancies in soybean yield under climate change (Battisti
etal., 2018; Marin et al., 2022). Hence, there is a need for improved parameterization to better represent the dynamics of yield
variability in countries such as Brazil and Italy.

The high yields in Argentina and Paraguay reflect the consistency of favourable growing conditions (Figure 8a),
particularly the alignment of daily temperatures and seasonal precipitation with critical growth stages, suggesting that these
regions are less susceptible to interannual variability along with the geographic locations to receive more radiation for
photosynthesis sources. The comparison of simulations and observations at the grid-cell level (Figure 11) reveals weak
correlations with no statistical significance in high-latitude countries (e.g., Canada and Russia). The models that lack sensitivity
to daylength are observed to contribute to more uncertainty (Battisti et al., 2018). Moreover, the low simulated yield in India,
which has a hot climate characterized by high mean daily temperatures of 27—28 °C (Supplementary file Figure S4) and low
soil moisture during the growing season, highlights the model capacity of the model to capture regional climatic challenges
that impact productivity. These climatic challenges likely exacerbate heat stress during critical phenological stages, such as
flowering and pod development, leading to reduced yields (Sinclair, 1986; Egli and Bruening, 2004). The contrasting regions
of high and low soybean yields underscore the ability of the model to capture the complex interplay between climate and crop
yields across diverse agroecological zones.

6.2 Model strength and application

We developed MATCRO-Soy v.1, a process-based eco-physiological model that uses the Farquhar equation to simulate the
leaf-level photosynthesis. The Farquhar equation is a widely recognized framework in plant physiology that simulates the
biochemical mechanisms of photosynthesis by describing the relationships among light intensity, CO, assimilation, and
Rubisco enzyme activity (Farquhar et al., 1980; Scafaro et al., 2023). Through the integration of this equation into a gridded
global crop model, MATCRO-Soy enhances the simulation of soybean growth and productivity under environmental changes
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to atmospheric CO,, temperature, and water scarcity. These factors are important for predicting and understanding the
mechanism of the impact of climate change on productivity. The calibration of MATCRO-Soy successfully represented the
response of soybean growth to a wide range of climatic conditions, resulting in reliable global yield simulations using a single
parameterization. While simplification may introduce errors, global tuning effectively minimizes these discrepancies in
specific regions as this similar result also shown by Smith et al. (2014).

Improving photosynthetic efficiency is one of the key improvements, particularly through enhancing stomatal conductance
and modifying Rubisco, the enzyme responsible for carbon fixation (Xu et al., 2022). We used Vcmax as a photosynthetic
parameter as it quantifies the Rubisco activity that is responsible for catalysing the conversion of carbon dioxide into organic
compounds. The peak Rubisco activity observed during the reproductive stage corresponds with trends in specific leaf nitrogen
and implicitly affected by the additional nitrogen fertilizer (Menza et al., 2023). The consideration of nitrogen fixation is
important as it is sensitive to adverse environmental conditions, flooding, water deficit, and inadequate temperatures, all of
which reduce N, fixation (Santachiara et al., 2019).

The simulated yield, LAI, aboveground biomass, and pod biomass from MATCRO-Soy were further compared at the point-
scale level with experimental datasets with distinct datasets used for each step of calibration and evaluation (Table 3) prior to
global-scale evaluation (Supplementary file Figure S2). While point-scale simulations employed the unified global parameters,
the results demonstrated reasonable agreement with a p value < 0.001 and a bias of 20-60 % for harvested yield, the seasonal
leaf area index, aboveground biomass, and pod biomass. The highest bias was observed for the seasonal LAI, which aligns
with the underestimation of VVecmax during critical growth stages. MATCRO-Soy can reproduce photosynthesis parameters
comparable to those of the observation data in site-scale analysis with overestimation in the reproductive stage (Figure 11).

MATCRO-Soy effectively uses high-quality climate data, soil information, and nitrogen fertilizer data to capture
biophysical processes involved in soybean growth and yield formation based on previous studies. Its flexibility in spatial
resolution enables its application across various scales, from local studies to global assessments. Moreover, the structure of
MATCRO is easily coupled with climate models and atmospheric CO: to increase the accuracy of yield predictions through
high-quality data input. This adaptability also enables integration with other land models, making it a valuable tool in both
ecological and agricultural research. MATCRO-Soy can be continuously refined with new data and plant physiological
knowledge, ensuring that it remains robust and adaptable. This adaptability makes it a valuable for researchers and policy-
makers working towards sustainable agriculture and global food security.

Furthermore, the integration of crop models with remote sensing data will open new possibilities for monitoring and
predicting crop productivity at finer spatial scales (Basso et al., 2001). Climate change may shift favourable conditions for
high yields in the United States or worsen the challenge of low yields in India for producing soybean yields, making it essential
for the model to project these trends accurately for future agricultural planning. In addition to climatic factors, variations in
yield may be attributed to technological advancements, shifts in agricultural practices, and changes in crop management
strategies that have not been considered in the model. The consideration of more detailed mechanisms of soybean growth can
be considered for more accurate results as climate change affects the pest populations (Chen and Mccarl, 2001). However, it
is important to acknowledge the limitations of the model, particularly its ability to predict yield variations under extreme or
rapidly changing climatic conditions. Continuous updates of the experimental dataset are necessary to maintain its relevance
and accuracy in predicting future soybean yields.

6.3 Model challenges and future directions

In the evaluation process, it is important to recognize the interannual variability and spatial variability. There are many grid
cells that have a low correlation (nonsignificant) of soybean yield between the simulated and observed values in Brazil when
considered in each single cell (Figure 9), but the correlation at the national-scale level is high (Figure 7). This means that local
climatic factors affect soybean yield in Brazil. However, MATCRO-Soy is able to recognize broader regional trends leading
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to its aim at representing yield behaviour. Figure 12 presents the relative RMSE (RMSE value compared with the observation
value) between the simulation and GDHY datasets for the detrended yield at the grid-scale. High relative RMSE values are
observed in some parts of South America (particularly in Argentina and Paraguay), the United States, India, and China. Lower
relative RMSE values are evident in regions such as Brazil. However, low RMSEs are found in Brazil and the United States
at the national-level, although higher relative RMSEs are found in some grid cells of the United States. Detailed information
on the spatial variation in the error components contributors is provided in Supplementary File Figure S5 for the long-term
yield trend and Figure S6 for the detrended yield. These findings highlighted that the number of grids significantly influences
model performance, with regions containing fewer grids being more sensitive to localized factors and spatial heterogeneity
during aggregation. These emphasize the importance of considering spatial resolution and representation when evaluating
model performance.

relative RMSE of detrended yield
60°

2
-l f?}ﬁ > B
g f- ot
- +
ook
B 7
:_é‘ .‘
4
-30°F 85 ,_"?
-
5 \
0o 20 80 -a0° 0 40 80 120 760
RMSE
T S
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

Figure 12. Relative RMSE calculation between simulated and observed yield for detrended yield in grid-cell level.

Uncertainty in MATCRO-Soy is reflected through the challenges in global-scale model evaluation related to the model
assumptions of crop cultivars being homogenous globally and the upscaling parameters due to the lack of parameterization,
making it is unrealistic to reproduce the variability at the regional-scale with very high accuracy (Miller et al., 2017; Zaehle
and Friend, 2010). This uncertainty is notably pronounced in the global aggregation of yield simulations at the grid-cell scale.
Global aggregation can escalate substantially for specific combinations of aggregation units, crop model limitations, and years
(Porwollik et al., 2017). Future assessments of models and projections of crop yields will require careful consideration of the
significant contrast between different aggregation approaches used for individual countries or regions. To address this, we
used harmonized ISIMIP data to minimize methodological bias and emphasize the importance of flexible model development
for reducing uncertainty (Yin, 2013).

We found a large underestimation in 2002, and overestimation in 2009 when comparing the soybean yield simulated using
bias-corrected climate data was compared with FAO data (Figure 5). One possibility for these discrepancies in the interannual
variability may be attributed to the influence of unaccounted extreme climatic events. Climatic events indicated by Oceanic
Nifio index, a three-month running mean of SST anomalies in the Nifio 3.4 region, show that La Nifia was present at the end
of 2002 and that EI Nifio occurred at the end of 2009 (NOAA, 2024). Some regions within major soybean-producing countries
are significantly affected by El Nifio events, further influencing yield variability (Anderson et al., 2017; lizumi et al., 2014).
Another possibility for the interannual variation in MATCRO-Soy tends to overestimate the long-term yield trend because of
the sensitive effect of the CO, concentration on the carbon assimilation module.

The simulated yield increases throughout the year, driven by the positive effects of increased atmospheric CO,, a
phenomenon known as the CO, fertilization effect, as observed in studies by Long et al. (2005) and Sakurai et al. (2014).
Compared with simulations using statistical radiation use efficiency, process-based models have this tendency because of the

23



625

630

635

640

645

650

655

660

https://doi.org/10.5194/egusphere-2025-453
Preprint. Discussion started: 21 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

greater effect of CO; on the photosynthesis process (Ai and Hanasaki, 2023). This result is expected, as most of the simulated
yield values were overestimated compared with the reference data, except for the yield in Canada, which was due to the low-
temperature conditions.

Comparative studies with other soybean models and refining the MATCRO-Soy on the basis of these findings will
contribute to a more comprehensive understanding of its capabilities and limitations. Incorporating additional datasets will
further enhance the model representation of real-world conditions. McCormick et al. (2021) suggested that integrating machine
learning models could improve accuracy through the calibration process with numerous datasets. However, the use of
mechanistic models embedded in MATCRO to simplify the process has proven valuable for understanding and predicting the
impacts of environmental factors on agricultural systems. This model can be used to identify potential adaptation strategies,
such as changes in planting dates or the development of new crop varieties, to mitigate the adverse effects of climate change
on soybean production. However, the application of this model at the field-scale requires high-quality data input and local
parameter data.

7 Conclusions

We utilize MATCRO which incorporates carbon assimilation modules based on the C3 photosynthesis of the Farquhar
model, to simulate global soybean yield in terms of eco-physiological integrated gridded data inputs of climate, soil type, and
nitrogen fertilizer. This study used experimental datasets and literature from previous studies to MATCRO-Soy to represent
soybean growth under various environmental conditions. An evaluation of the global mean yield revealed a statistical
correlation of 0.81 (p-value < 0.001) between the simulated and reported FAOSTAT data before the long-term yield trend was
removed. The correlation value decreased after the long-term yield trend was removed, with a Pearson correlations of 51.2 %
(p < 0.050), 50.2 % (p < 0.001), and 71 % grid cells statistically greater than the significant value (p > 0.05) over 34 years
(1981-2014) for the global, top 10 countries, and grid cell levels, respectively. The model successfully captured long-term
trends and interannual variability, demonstrating its capacity to reflect the impacts of climate factors. Moreover, MATCRO-
Soy also modelled reasonable photosynthetic processes in site-scale study, which shows a strong ability to represent the
temporal variation. This result highlights the model’s reliability and adaptability as a tool for understanding soybean growth
and yield dynamics.

While MATCRO-Soy presents a valuable framework for understanding the impacts of climate change on global soybean
production, many localized factors that influence soybean yield due to the shifts in climate (e.g., pests and diseases) can lead
to discrepancies in yield prediction. This highlights the need for high-quality data input. The integration of CO, dynamics in
MATCRO enhances crop response modelling while providing the carbon fertilization effect in process-based models,
warranting further investigation along with the effects of other greenhouse gases. The model may benefit for further refinement,
particularly in its treatment of temperature extremes, transpirable soil water, and nitrogen uptake during the photosynthesis
process. Integrating MATCRO with other environmental models would enhance its applicability in agricultural management,
while emphasizing the necessity for field-scale calibration to improve the model's reliability. MATCRO-Soy provides an
opportunity to estimate changes in global soybean production under future land-use or climate change scenarios to address the
complexities of climate interactions with agricultural systems. Overall, the MATCRO-Soy has proven to be useful in
understanding eco-physiological processes at both the global scale and the country and grid cell levels, providing valuable
insights for agricultural management and climate change adaptation.
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Code and data availability

This study used the model simulated by source code of MATCRO (Yusara et al, 2025) archived at
https://doi.org/10.5281/zenodo.14881385.
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