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Abstract. MATCRO-Soy is an eco-physiological process-based crop model for soybean (Glycine max L. (Merr.)). It was 

developed by modifying the parameters of MATCRO-Rice. The original model, MATCRO-Rice, integrates crop growth 

processes with a land surface model. These modifications were made using data from literature and field experiments across 

the world. The reliability of the model was validated extensively by observed soybean yield data across the global, national, 20 

and grid cell levels. A moderate correlation was observed between the MATCRO-Soy and FAOSTAT yield data with 

correlation coefficients of 0.81 (p < 0.001) for the global average yield and 0.512 (p < 0.01) for the global average detrended 

yield over a 34-year period (1981-2014). Furthermore, the grid-cell level validation revealed that 71 % of the grid cells in the 

global yield map exhibited a statistically significant correlation between the MATCRO-Soy simulated yield and the reference 

data derived from observational records. These results highlight the model’s ability to reproduce soybean yield under different 25 

environmental conditions, integrating soil water availability and nitrogen fertilizer. MATCRO-soy could enhance our 

understanding of crop physiology, especially, crop response to climate change and reduce uncertainty in climate change 

impacts on soybeans. 

  

 30 

1 Introduction 

Crop growth models have been widely used for yield estimation, agricultural management practice optimization, climate 

change impact evaluation, and informing decision-making about food security strategies (Adeboye et al., 2021;  Cuddington 

et al., 2013; Hoogenboom, 2000). Given the significant impact of weather variability on global yield changes (Müller et al., 

2017; Ray et al., 2015), process-based models can represent physiological processes influenced by key climate factors on the 35 

long-term impacts of climate on yield productivity (Boote et al., 2013; Cuddington et al., 2013; Fodor et al., 2017; Jones et al., 

2017; Marin et al., 2014; Stöckle and Kemanian, 2020). Process-based models explicitly incorporate crucial eco-physiological 

processes of photosynthesis and stomatal conductance, improving predictions under varying climate scenarios compared with 

mechanistic crop models that focus on the direct relationship between absorbed radiation and assimilation through radiation 

use efficiency (Jin et al., 2018). Hence, crop models are useful for capturing the complexity of soil-crop-climate interactions 40 
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for ensuring food security, optimizing yields, promoting sustainability, and planning adaptation strategies (García-Tejero et 

al., 2011). Global-scale simulations are essential to enhance these efforts by understanding interactions between physiological 

processes and environmental factors, supporting adaptive management practices and strengthening agricultural resilience. 

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has examined the performance of global 

gridded crop models (GGCMs)  in simulating the potential impact of climate change on crop yield  (Müller et al., 2017; Kothari 45 

et al., 2022). AgMIP efforts have demonstrated that the estimated impacts of environmental factors using a GGCM on crop 

yields generally align with measurements and that a model ensemble reduces uncertainty (Elliott et al., 2015). However, yield 

change under future climate change scenarios shows inconsistent results and greater variability in soybean than in other crops 

due because of model discrepancies (Jägermeyr et al. 2021). Despite being a major crop, soybean (Glycine max L. (Merr.)), 

has been studied less extensively than other crops in terms of crop response to changing environments (Ruane et al., 2017 ; 50 

Kothari et al., 2022). Therefore, the development of the new soybean model is crucial for reducing uncertainties in climate 

change impact assessments. 

It is important to utilize a diverse type of crop models and ensure model diversity to accurately understand the uncertainties 

of simulations, as relying on a single model can lead to biased results. To our knowledge, only five process-based models for 

global-scale soybean yield estimation with leaf-level photosynthesis and stomatal conductance parameters, including LPJ-55 

GUESS (Ma et al., 2022), LPJmL (Wirth et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2 (Sakurai et al., 2014), 

and JULES (Leung et al., 2020), making this approach remains relatively uncommon. Thus, further development and validation 

of process-based models that incorporate leaf-level photosynthesis and stomatal conductance parameters are essential. 

MATCRO (Masutomi et al., 2016a), is an ecosystem process-based model for crops embedded into the land surface model 

of minimal advanced treatments of surface interaction and runoff (MATSIRO; Takata et al., 2003) with a crop growth model 60 

for rice, which is further explained in Section 2. MATCRO-Rice uses state variables to exchange information  (e.g. temperature, 

soil moisture, transpiration, leaf area index, and photosynthesis rate) between the land surface model and crop growth model. 

Crop growth mechanisms that consider photosynthesis and stomatal conductance, which are widely used to assess the impact 

of greenhouse gases on carbon and water fluxes (e.g. ozone) in Masutomi et al. (2019), have been incorporated. Furthermore, 

MATCRO-Rice has been applied at the regional scale, and it has been utilized to measure climate impacts, which are important 65 

for developing adaptation strategies (Kinose and Masutomi, 2020; Masutomi, et al., 2016b). 

We developed a new process-based model for soybean (MATCRO-Soy v.1) that incorporates diverse biological processes 

and environmental interactions that drive plant growth and adaptation to changing conditions. Adapted from MATCRO Rice, 

this model is applied for soybeans by parameterizing key processes using experimental data and findings from the literature. 

The current version of MATCRO-Soy (v.1) was evaluated in a global-scale simulation, following a calibration process that 70 

considered essential photosynthesis mechanisms. This paper presents the model description in Section 2, the calibration process 

in Section 3, and the model evaluation in Sections 4 and 5.  

 

2 Model Description 

MATCRO-Soy is based on MATCRO-Rice, a process-based model of rice growth and yield, which has been modified for use 75 

in soybeans. MATCRO-Rice is initially a combined land surface and crop growth model used to explore land-atmosphere 

interaction in rice fields. Unlike the MATCRO-Rice v.1 version, MATCRO-Soy focuses on yield simulation only and omits 

the calculation of sensible and latent heat fluxes in the energy balance to reduce computational complexity while maintaining 

accuracy in simulating soybean growth and yield.  
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2.1 Overview of MATCRO-Soy 80 

MATCRO-Soy includes three main modules: phenology, photosynthesis, and carbon partitioning (Figure 1). The 

photosynthesis and carbon partitioning modules are closely linked with the carbon allocation driven by photosynthetic activity. 

The phenology module serves as a time dimension based on heat unit accumulation and directs the progression of the processes 

of carbon assimilation and partitioning by monitoring plant developmental stages from sowing to harvest. The phenology 

module simulates developmental stages based on developmental rate from sowing to harvest and influences key processes such 85 

as glucose production and allocation across plant organs. The photosynthesis module includes the absorbed photosynthetically 

active radiation (PAR) in the leaf canopy following the concept of de Pury and Farquhar (1997) to produce the net primary 

product (NPP). These photosynthesis products are stored in glucose and starch reserves. The carbon partitioning module 

distributes the glucose into each organ (i.e. leaf, stem, root, and storage organ) following the method proposed by the school 

of De Wit used in MACROS (de Vries et al., 1989). MATCRO accounts for leaf senescence as it influences nutrient cycling, 90 

crop productivity, and the leaf area index, which plays an important role in canopy photosynthesis. Leaf senescence is also 

driven by the phenology module. MATCRO incorporates the amount of nitrogen per leaf area (specific leaf nitrogen) as a key 

determinant of photosynthetic capacity. Root depth can affect photosynthesis indirectly through the plant's ability to access 

water and nutrients from soil layers, further influencing plant growth within the model framework.  

 95 
Figure 1. Flowchart diagram of soybean yield simulation by MATCRO-Soy. 

The input data consisted of environmental variables obtained from meteorological forcings, soil type classifications, 

nitrogen fertilizer applications, and agricultural management practices such as irrigation and seed sowing. These inputs are 

crucial for setting the initial conditions and boundary parameters for the simulations. The output of the MATCRO is the crop 

yield (kg ha-1) estimated for both irrigated and rainfed conditions on the basis of soil-crop interactions. First, we processed the 100 

parameterized growing degree days for maturity using crop calendar data to estimate the harvest time in the phenology module 
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(see section 2.2). The photosynthesis module includes limiting factors such as nitrogen fertilization and water stress, as detailed 

in Section 2.3. Then, the module was calibrated (Section 2.4). We conducted a parameterization process encompassing 

phenological development, carbon partitioning, and photosynthesis limited by water stress and nitrogen uptake. The crop yield 

was estimated using the parameterized seed-pod ratio (see section 2.5). The adjusted parameters in MATCRO-Soy are 105 

described in Section 2.6 where the key dynamic variables are parameterized over time to ensure reliable carbon assimilation 

in soybean. This comprehensive approach allows MATCRO to account for complex interactions between environmental 

conditions, crop physiology, and management practices, providing a robust framework for predicting crop yield and assessing 

agricultural productivity. 

2.2 Crop phenological development  110 

Phenological development defines the timing of developmental events based on environmental inputs. MATCRO calculates 

crop developmental stages (𝐷𝑉𝑆) using an index indicating the sowing time (𝐷𝑉𝑆=0) to maturation time (𝐷𝑉𝑆=1) on the basis 

of the integral of the temperature required to exceed the phenological changes. The module uses a formulation based on Bouman 

et al. (2001) as outlined in Equations (1) to (4).  

𝐷𝑉𝑆 =  𝐺𝐷𝐷/𝐺𝐷𝐷𝑚           (1) 115 

𝐺𝐷𝐷 = ∫ 𝐷𝑉𝑅𝑑𝑡′
𝑡

0
           (2) 

𝐺𝐷𝐷𝑚 = ∫ 𝐷𝑉𝑅𝑑𝑡′
𝑚

0
           (3) 

𝐷𝑉𝑅  = {

0,                       𝑇𝑚 < 𝑇𝑏  | 𝑇𝑚 > 𝑇ℎ
𝑇𝑚 − 𝑇𝑏,                   𝑇𝑏 < 𝑇𝑚 < 𝑇𝑜
(𝑇𝑜−𝑇𝑏)(𝑇ℎ−𝑇𝑖)

(𝑇ℎ−𝑇𝑜)
,       𝑇𝑜 < 𝑇𝑚 < 𝑇ℎ

             (4) 

where 𝐺𝐷𝐷 and 𝐺𝐷𝐷𝑚 indicate the growing degree days (C days) used to estimate the development of plants during the 

growing season at time t and at maturity, respectively. 𝐷𝑉𝑅  represents the developmental rate at 𝑡, whereas 𝑇𝑚 represents the 120 

temperature at 𝑡. The parameters 𝑇𝑏 , 𝑇𝑜, and 𝑇ℎ (C) are crop-specific and represent the minimum, optimum, and maximum 

temperatures for crop development, respectively.  
The impact of temperature on phenological stages varies for each crop stage as Boote et al. (1998) observed that cardinal 

temperatures (𝑇𝑏 ,𝑇ℎ , 𝑇𝑜) may differ for vegetative and reproductive stages. We follow Vries et al. (1989) during the growing 

season to simplify the calculation input and due to the lack of more detailed data in each phenological stage. This study 125 

parameterized the developmental stages at the flowering (𝐷𝑉𝑆𝑓), seed filling (𝐷𝑉𝑆𝑠), and maturation (𝐷𝑉𝑆𝑚) stages on the 

basis of the experimental datasets by calculating the mean, values listed in Table 2. MATCRO uses these 𝐷𝑉𝑆 parameters to 

define the period of leaf dry weight loss due to leaf senescence and the remobilization of starch reserves from the stem 

(Masutomi et al. 2016a). We assume that this phenological time in soybean is in the middle of the flowering and seed filling 

stage parameterized in this study as leaf loss started within those periods.    130 

2.3 Carbon assimilation process 

In the photosynthesis module of MATCRO-Soy, carbon assimilation is based on the leaf-level photosynthesis calculations in 

sunlit and shaded conditions (Dai et al., 2004) to predict canopy photosynthesis. The calculation includes the stomatal 

conductance response to relative humidity (Collatz et al., 1991). The net carbon assimilation (𝐴𝑛) in MATCRO is calculated 

using the Farquhar model as further described in Masutomi et al. (2016a), expressed in Eq. (5). 135 

𝐴𝑛 =  𝑓(𝑃𝐴𝑅, Pa, 𝑇𝑙𝑒𝑎𝑓 , 𝐶𝑂2𝑙𝑒𝑎𝑓 , 𝑉cmax , 𝐵𝐵𝑎 , 𝐵𝐵𝑏)         (5) 

𝐴𝑛 (mol(CO2) m-2 s-1) represents net carbon assimilation that contributes to net primary product for biomass growth. It is a 

function of the intensity of absorbed photosynthetic active radiation (𝑃𝐴𝑅, in mol(photon) m-2 s-1), air pressure (Pa, in Pa), leaf 
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temperature (𝑇𝑙𝑒𝑎𝑓, in K), CO2 concentration at the substomatal chamber (𝐶𝑂2𝑙𝑒𝑎𝑓 , in Pa(CO2) Pa(Air)-1), maximum Rubisco 

activity (𝑉cmax, in mol(CO2) m-2 s-1), the slope (𝐵𝐵𝑎 , in mol(H2O)m-2s-1) and intercept (𝐵𝐵𝑏 , in mol(H2O) m-2 s-1) of Ball-Berry 140 

model of the relationship between crop assimilation, stomatal conductance per unit leaf area, relative humidity at the leaf 

surface, and ambient CO2 concentration (Ball, 1988). In this study, we assume the leaf temperature is the same as air temperature 

to reduce the complexity of the calculation. 

Rubisco activity (𝑉cmax) is a key variable used to assess the carbon rate entering the photosynthetic pathway, as it catalyzes 

the crucial initial step of RuBP (Ribulose-1,5-bisphosphate) carboxylation in photosynthetic carbon assimilation for C3 plants 145 

(Sage, 2002; Xu et al., 2022). In MATCRO, 𝑉cmax is calculated as follows: 

𝑉cmax = 𝑉ctop exp(−𝐾n𝐿𝐴𝐼)          (6) 

𝑉ctop = max(𝑎𝑆𝐿𝑁2 + 𝑏𝑆𝐿𝑁 + 𝑐, 𝑉𝑐𝑡𝑜𝑝𝑚𝑎𝑥)        (7) 

𝑉𝑐𝑚𝑎𝑥 is the Rubisco activity at the top of the canopy (mol(CO2) m-2  s-1) limited by the exponential value of vertical distribution 

of leaf nitrogen (𝐾n) and leaf area index (𝐿𝐴𝐼, in m2 m-2). We determined the 𝑉ctop for photosynthetic rate limited by the specific 150 

leaf nitrogen (𝑆𝐿𝑁) in Eq. (7) for soybean using the relationship between two parameters of rubisco activity and leaf nitrogen 

from experiments summarized from Ainsworth et al. (2014) in the reproductive stage and Qiang et al. (2022) in the vegetative 

stage. This relationship is empirically represented with a polynomial quadratic equation limited by maximum value of Rubisco 

activity at the top canopy (𝑉ctop , in mol(CO2) m-2 s-1). 𝑎, 𝑏, 𝑐  are quadratic coefficient, linear coefficient, and constant 

respectively from the relationship of both variables where the data has been digitized from WebPlotDigitizer (Rohatgi, 2023).  155 

MATCRO considers nitrogen fertilization input denoted as 𝑁𝑓𝑒𝑟𝑡 (unit: kg(N) ha-1) which influences the amount of specific 

leaf nitrogen (𝑆𝐿𝑁, g(N) m-2), particularly under conditions of limited nitrogen availability (Menza et al., 2023; Thies et al., 

1995;. The change in SLN over the growing period follows the study of (Menza et al., 2023) which measured nitrogen 

fertilization treatments, as described Eq. (8) and (9). 

𝑆𝐿𝑁 =

{
 
 
 

 
 
 𝑆𝐿𝑁𝑌0 +

(𝑆𝐿𝑁𝑌1−𝑆𝐿𝑁𝑌0)(𝐷𝑉𝑆−𝑆𝐿𝑁𝑋1)

𝑆𝐿𝑁𝑋1
,  𝑖𝑓 𝐷𝑉𝑆 < 𝑆𝐿𝑁𝑋1  

𝑆𝐿𝑁𝑌2 +
(𝑆𝐿𝑁𝑌2−𝑆𝐿𝑁𝑌1)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑓)

(𝐷𝑉𝑆𝑓−𝑆𝐿𝑁𝑋1)
,  𝑖𝑓 𝑆𝐿𝑁𝑋1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑓

𝑌 +
(𝑌−𝑆𝐿𝑁𝑌2)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑠)

(𝐷𝑉𝑆𝑠−𝐷𝑉𝑆𝑓)
, 𝑖𝑓 𝐷𝑉𝑆𝑓 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑠

𝑆𝐿𝑁𝑌0 +
(𝑆𝐿𝑁𝑌0−𝑌)(𝐷𝑉𝑆−𝐷𝑉𝑆𝑚)

(𝐷𝑉𝑆𝑚−𝐷𝑉𝑆𝑠)
,  𝑖𝑓 𝐷𝑉𝑆𝑠 ≤ 𝐷𝑉𝑆 ≤ 𝐷𝑉𝑆𝑚

       (8) 160 

Y = 𝑆𝐿𝑁𝑌3,𝑙 +
𝑆𝐿𝑁𝑌3,ℎ−𝑆𝐿𝑁𝑌3,𝑙

𝑁𝑓𝑒𝑟𝑡,𝑚𝑎𝑥
∗ 𝑁𝑓𝑒𝑟𝑡         (9) 

𝑆𝐿𝑁 values vary across different phenological stages, with the developmental stage (𝐷𝑉𝑆) value of soybean growth ranges 

from 0 (sow) to 1 (harvest). We define 𝐷𝑉𝑆𝑓 ,𝐷𝑉𝑆𝑠 , 𝐷𝑉𝑆𝑚, and 𝑆𝐿𝑁𝑋1 as the start of flowering, seed filling, maturity time, and 

the point where the 𝑆𝐿𝑁 pattern started to changes with the parameterized values of 0.4, 0.659, 1, and 0.15 respectively. These 

growth stages are parameterized based on experimental datasets and align with study from Irmak et al. (2013) using the growth 165 

stage classification by Fehr and Caviness (1977).  𝑆𝐿𝑁 primarily depends on nitrogen derived from biological fixation and soil 

nitrogen, either from natural sources or applied fertilizers. Nitrogen fixation is implicitly captured through 𝑆𝐿𝑁 that influence 

𝑉cmax in Eq. (7) and (8), while the effect of applied fertilizers in Eq. (8) and (9). 

2.4 Crop growth dynamics 

The products of photosynthesis contribute to glucose reserves, which provide energy for growth during various developmental 170 

stages. The crop growth dynamics include a carbon biomass partitioning module to calculate the dry weight of each soybean 

organ (Worgan in kgha-1). This variable is the accumulated value of growth rate of dry weight (Gorgan in kg ha-1 s-1) during the 

time from emergence to harvest. Further details on this module can be found in Masutomi et al. (2016a). 
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Worgan = f(Gorgan)            (10) 

We calculate the Worgan in each soybean organ (i.e. leaf, stem, pod including the seed, glucose reserves and starch). Growth 175 

rate of the dry weight (Gorgan) is calculated based on the parameters of conversion factor of dry weight from glucose to organ 

(Fglu−organ in kgha-1(kg ha-1)-1) for leaf, stem, pod, root, and starch (listed in Table 1), and ratio of glucose partitioned to organ 

(P𝑜𝑟𝑔𝑎𝑛 in kg ha-1s-1) for shoot, leaf, and pod (listed in Table 2). Gorgan for each organ and storage, leaf, pod, root, stem, and 

starch, are expressed below: 

𝐺glu =  𝑓(𝑊𝑙𝑒𝑎𝑓 , Aglu, 𝑅𝑔𝑙𝑢)            (11)  180 

𝐺leaf = 𝐺glu𝑃shoot𝑃leaf𝐹glu-leaf          (12) 

𝐺stem = 𝐺glu𝑃shoot(𝑃leaf − 𝑃pod) × (1 − 𝑓starch)𝐹glu−stem       (13) 

𝐺pod = 𝐺glu𝑃shoot𝑃𝑝𝑜𝑑𝐹glu−pod          (14) 

𝐺root = 𝐺glu(1 − 𝑃𝑠ℎ𝑜𝑜𝑡)𝐹𝑔𝑙𝑢−𝑟𝑜𝑜𝑡           (15) 

𝐺𝑠𝑡𝑎𝑟𝑐ℎ = 𝐺glu𝑃shoot(𝑃leaf − 𝑃pod)𝑓starch𝐹glu−starch        (16) 185 

𝐺glu is the amount of glucose partitioned to soybean organ and reserve derived from function of dry weight of leaf (𝑊𝑙𝑒𝑎𝑓 in kg 

ha-1), net carbon assimilation in glucose form (𝐴glu in kg(CH2O) ha-1 s-1), and the remobilization from starch reserve in the stem 

after conversion to glucose (𝑅𝑔𝑙𝑢 in kg ha-1 s-1). Aglu is An that has been already converted using the conversion factor from CO2 

to glucose using the value of 1.08x106 [kg ha-1 h-1(mol m-2 s-2)-1] that is the physical and chemical constant for the conversion. 

𝑅𝑔𝑙𝑢 is the remobilization from starch reserve in the stem after converted to glucose using ratio of remobilization value. This 190 

𝑅𝑔𝑙𝑢 is subtracted from the dry weight of starch reserves (𝑊starch). 𝑓starch [kg ha-1(kg ha-1)-1] is the fraction of glucose allocated 

to starch reserves calculated in stem dry weight loss. Each growth rate of dry weight (𝐺organ) is calculated based on the 

parameters conversion factor of dry weight (Fglu−organ) and ratio of glucose partitioned to organ (𝑃𝑜𝑟𝑔𝑎𝑛) value as follow in Eq 

(17) – (19): 

𝑃shoot = {

1 − 𝑃𝑟𝑜𝑜𝑡 ,   𝑖𝑓 𝐷𝑉𝑆 < 0
1−𝑃𝑟𝑜𝑜𝑡(𝐷𝑉𝑆𝑚−𝐷𝑉𝑆)

𝐷𝑉𝑆𝑚
,  𝑖𝑓 0 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑚

1,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑚

        (17) 195 

𝑃leaf =

{
 
 

 
 𝑃𝑙𝑒𝑎𝑓0 +

𝐷𝑉𝑆

𝐷𝑉𝑆𝑙𝑒𝑎𝑓1
(𝑃𝑙𝑒𝑎𝑓1 − 𝑃𝑙𝑒𝑎𝑓0),   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑙𝑒𝑎𝑓1

𝑃𝑙𝑒𝑎𝑓2 −
(𝑃𝑙𝑒𝑎𝑓2−𝑃𝑙𝑒𝑎𝑓1)

𝐷𝑉𝑆𝑙𝑒𝑎𝑓2−𝐷𝑉𝑆𝑙𝑒𝑎𝑓1
(𝐷𝑉𝑆𝑙𝑒𝑎𝑓2 − 𝐷𝑉𝑆),  𝑖𝑓 𝐷𝑉𝑆𝑙𝑒𝑎𝑓1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑙𝑒𝑎𝑓2

0,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑙𝑒𝑎𝑓2

   (18) 

𝑃pod = {

0,   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑝𝑜𝑑1
𝐷𝑉𝑆−𝐷𝑉𝑆𝑝𝑜𝑑1

𝐷𝑉𝑆𝑝𝑜𝑑2−𝐷𝑉𝑆𝑝𝑜𝑑1
,  𝑖𝑓 𝐷𝑉𝑆𝑝𝑜𝑑1 ≤ 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑝𝑜𝑑2

1,   𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑝𝑜𝑑2

       (19) 

The glucose partitioned in each organ is adjusted during the developmental stage using experimental data in the calibration 

process, further described in Section 3. However, the dry weight of leaf in this module is reduced due to leaf senescence by 

calculating loss of leaf dry weight (𝐿leaf in kg ha-1 s-1) derived from the calibration of partitioned glucose ratio to the ratio of 200 

dead leaf (𝑃𝑑𝑙𝑒𝑎𝑓 in s-1), as outlined in Eq. (20) and (21). 

𝐿leaf = {
0                    ,   𝑖𝑓 𝐷𝑉𝑆 < 𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1

𝑃𝑑𝑙𝑒𝑎𝑓(𝑊𝑙𝑒𝑎𝑓 − 𝑊𝑔𝑙𝑢),  𝑖𝑓 𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1
       (20) 

𝑃𝑑𝑙𝑒𝑎𝑓 = 𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2
( 𝐷𝑉𝑆−𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1)

(1−𝐷𝑉𝑆𝑑𝑒𝑎𝑙𝑒𝑎𝑓1)
         (21) 
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Then we calculate the leaf area index (LAI) that serves as a parameter to assess the leaf surface area relative to the ground area. 

It directly influences the plant ability to intercept solar radiation for photosynthesis.  205 

LAI is computed using the adjusted  specific leaf weight (SLW in kg ha-2) expressed as: 

𝐿𝐴𝐼 =
𝑊leaf+𝑊glu

𝑆𝐿𝑊
            (22) 

𝐿𝐴𝐼  is calculated from the estimated leaf weight (Wleaf, in kg ha-2) and glucose weight (W𝑔𝑙𝑢 , in kg ha-2) divided with 

parameterized SLW, a key parameter that links leaf dry weight to surface area. The value of SLW dynamically changed during 

the developmental stage following exponential relationship: 210 

𝑆𝐿𝑊 = 𝑆𝐿𝑊max + (𝑆𝐿𝑊min − 𝑆𝐿𝑊max) 𝑒𝑥𝑝(−𝑆𝐿𝑊x𝐷𝑉𝑆)       (23) 

𝑆𝐿𝑊max , 𝑆𝐿𝑊min , and 𝑆𝐿𝑊x  represent the maximum, minimum, and slope parameters, respectively, that define the values 

observed in the exponential relationship based on experimental dataset in Table 3. In addition to LAI, photosynthesis is also 

indirectly affected by the root depth (𝑧root, in m) that determines the plant capacity for water and nutrient uptake. Root depth is 

calculated as follow: 215 

𝑧root = 𝑓(𝑟root , 𝑧rootmax)           (24) 

𝑧root is the accumulative value from growth rate of root depth (𝑟root, in mm day-1) limited by maximum possible root depth 

(𝑧rootmax, in meter).   

2.5 Soybean yield estimation  

The soybean yield is calculated from the pod dry weight at harvest (𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡) via the seed-pod ratio (SR) in MATCRO-220 

Soy. The yield is further affected by water stress (𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠) in Eq. (25).  

𝑌𝑖𝑒𝑙𝑑 =  𝑓(𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡 , 𝑆𝑅, 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 ,𝑇)         (25) 

The yield was calculated using the parameter SR, which is the ratio of yield (seed, kg ha-1) to the storage organ of the pod 

(𝑊𝑝𝑜𝑑ℎ𝑎𝑟𝑣𝑒𝑠𝑡, kg ha-1) at harvest time and was derived from experimental datasets in Table 3. T is the temperature (Kelvin) that 

limits heat and cold damage to the yield of soybean. The water stress factor (𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠) was determined on the basis of the 225 

fraction of available soil water at the soil layer -i (𝐹𝐴𝑊𝑖) over crop yield, based on a previous study on the relationship between 

the soybean transpiration ratio and transpirable soil water conducted by Ray and Sinclair (1998), given in Eq (26). 

𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 = {
1

0.5
 𝐹𝐴𝑊𝑖 ,   𝑖𝑓 𝐹𝐴𝑊𝑖 ≤ 0.5

1,  𝑖𝑓 𝐹𝐴𝑊𝑖 > 0.5
          (26) 

The value of 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 depends on soil water availability at soil layer-i (𝐹𝐴𝑊𝑖), which is the estimated soil water content based 

on the water flux between the soil layers (Masutomi et al., 2016a) calculated via Eq. (27):  230 

𝐹𝐴𝑊𝑖 = 
𝑊𝑆𝐿𝑖−𝑊𝑆𝐿𝑤𝑖𝑙𝑡

𝑊𝑆𝐿𝐹𝐶−𝑊𝑆𝐿𝑤𝑖𝑙𝑡
           (27) 

where 𝑊𝑆𝐿𝑖 , 𝑊𝑆𝐿𝑤𝑖𝑙𝑡, and 𝑊𝑆𝐿𝐹𝐶  represent the water level in the soil layer -i, wilting point, and field capacity, respectively. 

A value of 𝑓𝑤𝑠𝑡𝑟𝑒𝑠𝑠 equal to 1 indicates no water stress as the fraction of available soil water is adequate for crop growth. Hence, 

yield is calculated as the potential yield constrained by water stress.  

2.6 Soybean-specific parameters 235 

MATCRO-Soy shares several parameters with MATCRO-Rice as both are C3 species. However, soybean differs from 

cereal crops because of its nitrogen-fixing ability. This characteristic is represented through specific leaf nitrogen during the 

crop growth, as described in Eqs. (8) and (9). The crop-specific parameters reflect the unique physiological and chemical 

processes involved in soybean growth. but still align with the general framework of MATCRO-Rice. Key parameter 

adjustments are outlined in Table 1 as MATCRO employs a set of specific parameters to simulate crop growth and yield. 240 
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These parameters include factors related to carbon allocation, root growth characteristics, and crop development based on 

cardinal temperatures. By accurately representing the unique physiological and biochemical characteristics of soybeans, these 

parameters contribute to the ability of the model to predict crop yield with greater precision. 

MATCRO-Soy aims for simulations applicable to a global scale; hence, it uses a single global parameterization as a 

standardized set of parameters applied worldwide. It uses a unified approach for modelling crop behaviour across different 245 

regions. It was assumed that the parameter values from the different treatments and cultivars were independent. Table 2 contains 

a list of variables parameterized within the model, including the glucose partitioning, nitrogen parameters, and photosynthetic 

capacity. Through the parameterization of these variables, the model can be adapted for various growing conditions and 

employed to assess the sensitivity of crop performance to different factors. These parameters are commonly used to evaluate 

the crop model sensitivity to environmental changes and require further attention, as highlighted by simulations from other 250 

crop model as wells (Battisti et al., 2018).  

 

Table 1. Crop-specific parameters used for MATCRO-Soy

Parameters Description Value Units Source Eq. 

𝐹𝑔𝑙𝑢−𝑙𝑒𝑎𝑓  conversion factor of dry weight from glucose to leaf 0.871 kg ha-1 (kg ha-1)-1 Penning de Vries et al. (1989) (12) 

𝐹𝑔𝑙𝑢−𝑠𝑡𝑒𝑚 conversion factor of dry weight from glucose to stem 0.810 kg ha-1 (kg ha-1)-1 Penning de Vries et al. (1989) (13) 

𝐹𝑔𝑙𝑢−𝑟𝑜𝑜𝑡 conversion factor of dry weight from glucose to root 0.857 kg ha-1 (kg ha-1)-1 Penning de Vries et al. (1989) (15) 

𝐹𝑔𝑙𝑢−𝑝𝑜𝑑 conversion factor of dry weight from glucose to pod 0.759 kg ha-1 (kg ha-1)-1 Penning de Vries et al. (1989) (14) 

𝐹𝑔𝑙𝑢−𝑠𝑡𝑎𝑟𝑐ℎ carbon fraction in the dry matter of starch 0.9 kg ha-1 (kg ha-1)-1 Physical and chemical constant (15) 

𝐾𝑁 vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) (6) 

𝑟𝑟𝑜𝑜𝑡 rate of root depth increase 
0.03 mm day-1 Ordóñez et al. (2018) ; Nakano 

et al. (2021) 

(24) 

𝑍𝑟𝑜𝑜𝑡𝑚𝑎𝑥 maximum root depth 1.7 m Penning de Vries et al. (1989) (24) 

𝑇𝑏  base temperature for crop development 10 ℃ Penning de Vries et al. (1989) (4) 

𝑇h highest temperature for crop development 34 ℃ Penning de Vries et al. (1989) (4) 

𝑇𝑜  optimum temperature for crop development 27 ℃ Penning de Vries et al. (1989) (4) 

 

Table 2. Parameterized variables for soybean in MATCRO 255 

Variables Value Units Description 

𝑎 -18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝑏 114.33 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝑐 -73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (7) 

𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1 0.6 - 1st DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2 1 - 2nd DVS point where the dead leaf ratio pattern changes 

𝐷𝑉𝑆𝑓 0.4 - developmental stage on initial flowering stage 

𝐷𝑉𝑆𝑙𝑒𝑎𝑓1 0.25 - 1st DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆𝑙𝑒𝑎𝑓2 0.659 - 2nd  DVS point where the leaf partitioning pattern changes 

𝐷𝑉𝑆𝑚 1 - developmental stage at maturity time 
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Variables Value Units Description 

𝐷𝑉𝑆𝑝𝑜𝑑1 0.53 - 1st DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆𝑝𝑜𝑑2 0.72 - 2nd  DVS point where the pod partitioning pattern changes 

𝐷𝑉𝑆𝑠 0.659 - developmental stage to start seed filling stage 

𝐷𝑉𝑆𝑆𝐿𝑁1 0.4 - 1st DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆𝑆𝐿𝑁2 0.4 - 2nd  DVS point where the specific leaf nitrogen changes along with DVS 

𝐷𝑉𝑆𝑆𝐿𝑁3 0.659 - 3rd DVS point where the specific leaf nitrogen changes along with DVS 

𝑓𝑠𝑡𝑎𝑟𝑐ℎ  0.18 - fraction of glucose allocated to starch reserves 

𝑆𝑅 0.68 - seed-pod ratio (SR) accounting harvest index from storage organ 

𝑁𝑓𝑒𝑟𝑡,ℎ𝑖𝑔ℎ  300 𝑘𝑔𝑁ℎ𝑎−1 nitrogen fertilizer value used in high nitrogen fertilizer in Menza et al. (2023)  

𝑃𝑙𝑒𝑎𝑓0 0.38 - glucose partitioning ratio of leaf toward shoot in the initial DVS point 

𝑃𝑙𝑒𝑎𝑓1 0.6 - glucose partitioning ratio of leaf toward shoot in the 1st DVS point 

𝑃𝑙𝑒𝑎𝑓2 0 - glucose partitioning ratio of leaf toward shoot in the 2nd DVS point 

𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓1 0 𝑠−1 dead leaf ratio value in the 1st  DVS point 

𝑃𝑑𝑒𝑎𝑑𝑙𝑒𝑎𝑓2 0.000001 𝑠−1 dead leaf ratio value the 2nd DVS point 

𝑆𝐿𝑁𝑌0 0.75 𝑔𝑁𝑚−2 initial specific leaf nitrogen 

𝑆𝐿𝑁𝑌1 2.25 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 1st DVS point  

𝑆𝐿𝑁𝑌2 1.7 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 2nd DVS point 

𝑆𝐿𝑁𝑌3,ℎ 0.75 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 3rd DVS point when using high nitrogen fertilizer 

𝑆𝐿𝑁𝑌3,𝑙 1.8 𝑔𝑁𝑚−2 specific leaf nitrogen value in the 3rd DVS point when using low nitrogen fertilizer 

𝑆𝐿𝑊𝑚𝑎𝑥  600 𝑘𝑔𝑚−2 maximum specific leaf weight 

𝑆𝐿𝑊𝑚𝑖𝑛 250 𝑘𝑔𝑚−2 minimum specific leaf weight 

𝑆𝐿𝑊𝑥 2.5 - exponential slope of specific leaf weight to the developmental stage 

𝑉𝑐𝑡𝑜𝑝𝑚𝑎𝑥  103 𝜇𝑚𝑜𝑙(𝐶𝑂2)𝑚−2𝑠−1 maximum Rubisco capacity at the canopy top in Eq. (7) 

 

3 Model Calibration 

The model parameters were tuned to represent the observed phenology and seasonality of biomass development. Once 

calibration is complete, the model continues to simulate crop growth, which encompasses phenological development, carbon 

assimilation, assimilate partitioning, and crop yield. We conducted calibrations from various environmental conditions and 260 

soybean varieties documented in previous experimental studies as detailed in 3.1 and Table 3. The model calibration included 

parameterizing the dynamic biomass growth for each organ, leaf senescence, and specific leaf weight denoted as 𝑃𝑜𝑟𝑔𝑎𝑛 during 

the developmental stage denoted as 𝐷𝑉𝑆. Other calibrations using the experimental dataset included the phenological stage, 

and the seed-pod ratio (SR). The crucial phenological stage (e.g. flowering and seed filling) was calculated as the average value 

of the reported values in the experimental dataset. MATCRO applies this crop growth module following the method proposed 265 

by the school of de Wit used in MACROS (Vries et al., 1989), and compares biomass growth with the observed values during 
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developmental stages. Shifts in partitioning and growth patterns were identified and used as reference points in the 

parameterization. 

3.1 Description of the site data for calibration 270 

The calibration process used experimental datasets from previous studies collected from field experiments across six different 

sites in four countries: Frederico Westphalen and Piracicaba (Brazil), Ya’an (China), Champaign (United States of America, 

US), Morioka and Tsukubamirai (Japan), as seen in Table 3. The soybean cultivars grown at these experimental sites 

represented different maturity groups. A variety of management practices related to water management and nutrients were 

utilized in the experiments. Nitrogen fertilizers were applied in most experiments, but mineral nitrogen was used in the soil at 275 

sites in Brazil and the US. 

Weather data were derived from the records at the meteorological station nearest to the experimental site. The climates at 

the respective sites were as follows. The ranges of daily mean air temperatures during the growing season was 18-30ºC in 

Frederico Westphalen (Brazil), 19-31 ºC in Piracicaba (Brazil), 17-27 ºC in Tsukubamirai (Japan), 14-25 ºC in Morioka (Japan), 

18-26 ºC in Ya’an (China), and 15-28 ºC in Champaign (US). The seasonal precipitation (mm) for the sites were 1669 mm in 280 

Frederico Westphalen (Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka (Japan), 865 mm in Tsukubamirai (Japan), 

1012 mm in Ya’an (China), and 787 mm in Champaign (US). The amount of solar radiation also differed among the 

experimental sites where China received lowest solar radiation and Brazil received highest solar radiation during the 

experimental period (Supplementary file Figure S1). These data represent diverse climatic conditions in soybean-producing 

countries. The field data used for calibration were collected across multiple crop seasons, specifically from 2002, 2003 to 2007 285 

and from 2013 to 2016. These time periods were expected to capture the current climatic and environmental variability. 

 

Table 3. Information on field-experimental data of location, crop season, variety, maturity group, water management, and nitrogen fertilizer, 

as well as the number of experiments for calibrating glucose partitioning ratio and evaluating the soybean yield simulations. 

Location Crop season Variety (RMG*) 

Water management,  

Nitrogen fertilizer 

(g N m-2) 

Experiments (n) Reference 

Brazil (Frederico 

Westphalen) 

2013-2014 BRS284 (6) Rainfed, 0 5 (Battisti et al., 2017a) 

Brazil (Piracicaba) 2013-2014 BRS284 (6) Irrigated and Rainfed, 0 6 (Battisti et al., 2017a) 

China (Ya’an)  2014 15 cultivars (5-8) Irrigated, NA 15 (Wu et al., 2019)  

2014-2016 Texuan13 (7), 

Jiuyuehang (5), Nandou12 (6) 

9 

United States 

(Champaign) 

2002, 2004-

2007 

Pioneer93B15 (3) Rainfed, 0 8 (Morgan et al., 2005; 

Ainsworth et al., 2007) 

Japan (Tsukubamirai) 2013-2015 Enrei (2), Fukuyutaka (4), 

Ryuhou (2) 

Rainfed, 25-27 16 (Nakano et al., 2021) 

Japan (Morioka) 2013-2016 Ryuhou (2) Rainfed, 25-30 12 (Kumagai, 2018; 

Kumagai, 2021) 

*Relative maturity group290 
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3.2 Biomass partitioning and specific leaf weight 

This model represents carbon assimilation by incorporating the carbon fraction in dry matter and glucose allocation to various 

plant organs. The glucose ratio for each organ is parameterized based on measurements of leaf weight, leaf senescence, stem 

weight, pod weight, and specific leaf weight across different developmental stages. To simulate glucose partitioning, we used 295 

Eq. (17) – (24) to fit the segmented linear models to the experimental dataset (Figure 2 and Figure 4) and used the parameter 

values as shown in Table 2, as this value is used to obtain the average value of soybean partitioning behaviour. The calibrated 

glucose partitioning ratio varied across the varieties and environmental conditions and was derived by converting biomass 

growth into glucose allocation as outlined in Eqs. (11)–(16). However, our parameterization reflected the observation data, as 

well as the linear growth of leaves and pods during the developmental stages. The dataset from Morioka (Japan) was not 300 

included in this biomass partitioning. However, it was utilized for seed-pod ratio and phenology parameterization along with 

evaluation after the calibration step (Supplementary file Figure S2). The dashed lines in Figure 2 and 3 indicate the estimated 

flowering and seed filling stages by calculating the average in all experimental datasets. 

Carbon assimilation primarily occurs with subsequent allocation to other parts of the plant. Compared with varieties from 

other sites, the soybean varieties observed in the experimental dataset from Tsukubamirai (Japan) tended to have lower 305 

partitioning to the stem during the vegetative stage. The ratio of glucose to leaves in Sichuan (China) was unexpectedly high 

near maturity in 2016, resulting in partitioning to pods at a low level due to low temperature and drought conditions. The storage 

organ biomass increases in the reproductive stage to produce pods and seeds, whereas the shoot will senesce at the end of the 

maturity period. Hence, yield is estimated using seed weight (as determined by the storage organ weight) and the parameterized 

seed-pod ratio. Pod partitioning in Champaign (US) tended to occur early in pod initiation in early maturation varieties, and the 310 

dry weight of pods before the seed filling stage is relatively high (Kawasaki et al., 2018). Early pod initiation has also been 

observed in the Ryuhou variety in Tsukubamirai in 2013 (Nakano et al., 2021).  

 

Figure 2. Glucose partitioning ratio to leaves (a) and pod (b) compared with the shoot during the developmental stage (DVS = 0 - 1) in the 

experimental sites shown by shaped points (square: Piracicaba, circle: Frederico Westphalen, triangle: Tsukubamirai, plus: 315 

Champaign, cross: Ya’an. The red lines are the fitted model of segmented lines used for glucose partitioning in MATCRO-Soy. The 

dashed line marks the averaged flowering, seed filling, and harvest time from the experimental datasets. 
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Figure 3. Dead leaf ratio (s-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2. 

 320 

The dead leaf ratio parameter in Figure 3 shows the degree of leaf senescence after the seed filling stage due to the leaf 

process. The dead leaf ratio is calculated from the amount of leaf loss observed during the growing season. The specific leaf 

weight (SLW) is a significant parameter in crop growth parameterization and has been calibrated to follow the observation data 

pattern shown in Figure 4. We used the measured leaf weight and leaf area index data from the experimental datasets described 

in 2.4 and Eq. (23) to calculate the ratio of leaf weight to leaf area (SLW) during different phenological stages. These ratios 325 

change over time with distinct values as they vary across different growing seasons and cultivars (Thompson et al., 1996; 

Slattery et al., 2017). In the figure, SLW from Champaign (US) was excluded because of discrepancies in the timing of the 

measurements in leaf area and leaf weight biomass. While the specific leaf weight varied among the sites, we fit the model of 

SLW assuming a saturating exponential function of the developmental stage (red line in Figure 4). This pattern aligns well 

with the biological process as SLW initially increases due to rapid biomass accumulation but saturates as leaves mature.  330 

  
Figure 4. Specific leaf weight (kgha-1) during the developmental stage (DVS = 0 - 1). Similar with Figure 2. 

4 Model Evaluation Setup 

MATCRO was developed in FORTRAN and coupled with the global climate models output, simulated at a spatial 

resolution of 0.5° × 0.5° and hourly-daily temporal resolution. The output of the model is gridded crop yield (kg ha-1) as stored 335 

in netCDF file format in a global map with one-time harvest simulated in one year. We perform the model evaluation for 

global, country, and grid cell levels for 34 years (1981 – 2014) at 0.5° spatial resolution and yearly harvested yield output. The 
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accuracy of the simulated yield was assessed using reference global and country-level data from the Food and Agriculture 

Organization (FAOSTAT, 2023), while the grid cell level yield was compared with the Global Dataset of Historical Yield 

(GDHY) data which is derived from statistical records, FAO data, and remote sensing data (Iizumi, 2019). 340 

4.1 Simulation settings and data inputs 

The parameters were set as shown in Table 4, covering the period of the sowing year from 1980 to 2014, with a various 

planting time across different regions. This model incorporated global daily climate data (86400 s) as input data. While the 

simulation framework was inherited from the established MATCRO-Rice v.1 (Masutomi et al. 2016b), several modifications 

were made to enhance its applicability at a global scale. Notably, the temporal resolution was adjusted from half-hourly (1800 345 

s) to hourly (3600 s), allowing the model to maintain consistency in capturing critical processes such as diurnal variations in 

photosynthesis and transpiration, while optimizing computational efficiency. These adjustments ensured that the model 

remained suitable for large-scale simulations while preserving essential physiological processes. 

The model simulates soybean yield using input data as described in Table 5. It uses global input data as follows: crop 

calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which separates the rainfed and irrigated systems, 350 

atmospheric CO2 and climate data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) that provides bias-

adjusted climate input data for historical data (GSWP3-W5E5 v2.0), soil classification from the Harmonized World Soil 

Database (HWSD v1.2), and nitrogen fertilization for C3 fixing crops of the ISIMIP, which is derived from the land use dataset 

(Hurtt et al., 2020). We use ISIMIP bias-adjusted data to maintain uniformity in the climate impact data across sectors and 

scales in their framework. This dataset, which is provided by ISIMIP, has a spatial resolution of 0.5 . To determine the growing 355 

degree days for maturity, we considered the phenological maturity time from the GGCMI crop calendar for harvest time and 

global ISIMIP climate data over 10 years (2000-2010) to capture the variability shifts in the current evaluation years.  

 

Table 4. Parameter settings for simulation  
Variable Value Unit Description 

Yearsow varied Year year of sowing day 

DOYsow varied DOY day of year of sowing day 

REStime 3600 s time resolution for simulation 

RESclimate 86400 s time resolution for climate forcing data 

RESwe/ns 0.5 degree spatial resolution north to south or west to east 

Soil layer 5.0 - number of simulated soil layer to calculate soil water content 

WSL 1.0 - soil water content at emergence 

Wleaf0 1.0 kg ha-1 dry weight of leaf at emergence 

Wstem0 1.0 kg ha-1 dry weight of stem at emergence 

Wroot0 1.0 kg ha-1 dry weight of root at emergence 

Wglu0 0.5 kg ha-1 dry weight of glucose reserve at emergence 

Za 3.0 m reference height at which wind speed is observed 

Zmax 4.0 m depth of soil layer 

Zt 0.05 m depth of topsoil layer 

Zb 2.0 m depth from the soil surface to the upper bound of the most bottom layer of soil 

 360 

Table 5. Data input for MATCRO simulation. 

Variable Unit Data source Spatial Resolution 

Daily time-step 

Precipitation  kgm-2s-1 0.5 × 0.5 
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Near-surface specific humidity kg kg-1 GSWP3 – W5E5 (Kim, 2017; Cuchi et 

al., 2020; Lange, 2019; Lange et al., 

2021) 

0.5 × 0.5 

Maximum, minimum, and mean temperature  Kelvin 0.5 × 0.5 

Surface downwelling shortwave radiation W m-2 0.5 × 0.5 

Near-surface wind speed m s-1 0.5 × 0.5 

Surface air pressure Pa 0.5 × 0.5 

Yearly time-step 

Atmospheric CO2 concentration ppm ISIMIP (Büchner and Reyer, 2022) - 

Nitrogen fertilizer  kg ha-1 ISIMIP (Volkholz and Ostberg, 2022) 0.5 × 0.5 

Constants 

Latitude and longitude ° - - 

Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5 × 0.5 

Sowing time Julian day GGCMI (Jägermeyr et al., 2021) 0.5 × 0.5 

Growing degree days for harvest time °C days Parameterized in this study 0.5 × 0.5 

Soil type - HWSD (Volkholz and Müller, 2020) 0.5 × 0.5 

4.2 Global yield evaluation methods 

In this study, we assessed the statistical relationship between simulated yields and reference data using common metrics of 

Pearson correlation coefficient (corr) in Eq (28) with the significancy levels (p-values), agreement between the simulation and 365 

observation using root mean square error (RMSE) in Eq. (29), and bias in Eq. (30) for the time-series yield data. 

𝑐𝑜𝑟𝑟 =  
∑ (𝑋𝑖−𝑋̅)
𝑛
𝑖=1 (𝑌𝑖−𝑌̅)

√∑ (𝑋𝑖−𝑋̅)
2𝑛

𝑖=1 (𝑌𝑖−𝑌̅)
2
           (28) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑌𝑖)2
𝑛
𝑖=1           (29) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
1

𝑛
∑ |𝑋𝑖 − 𝑌𝑖| 
𝑛
𝑖=1 ×

1

𝑌̅
         (30) 

where 𝑋𝑖 and 𝑌𝑖  indicated simulated and observed values in each measurement, while 𝑋̅ and 𝑌̅denotes the mean of simulated 370 

and observed values for the harvested year annually. The 𝑖  and 𝑛  shows the 𝑖 -th data point and total number of data, 

respectively. We use 𝑛 = 34 years for global-scale data, while output after calibration is evaluated in point-scale using 𝑛 ranged 

from 14-122 of the available experimental datasets.  

Furthermore, we evaluated yield fluctuation on the detrended yield and long-term yield trend separately using mean 

standard deviation (MSD) and its component to provide more clear interpretation of the model evaluation error (Gauch et al., 375 

2003; Kobayashi and Salam, 2000) in Eq. (31)  

𝑀𝑆𝐷𝑦 = 𝑆𝐵𝑦 + 𝑆𝐷𝑆𝐷𝑦 + 𝐿𝐶𝑆𝑦           (31) 

Mean squared deviation (𝑀𝑆𝐷𝑦) is the square of RMSE for long-term yield trend or detrended yield. Detrended yield is 

calculated based on the value after yield is reduced by its long-term trend. Its components included mean squared bias (𝑆𝐵𝑦), 

difference in the magnitude of fluctuation namely squared difference between standard deviations (𝑆𝐷𝑆𝐷𝑦), and the lack of 380 

positive correlation weighted by the standard deviations (𝐿𝐶𝑆𝑦) as proposed by Kobayashi and Salam (2000) calculated in Eq 

(32) – (37) below:  

𝑆𝐵𝑦 =  (𝑋̅ − 𝑌̅)
2             (32) 

𝑆𝐷𝑆𝐷𝑦 = (𝑆𝐷𝑋 − 𝑆𝐷𝑌)
2            (33) 

𝑆𝐷𝑋 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑋̅)

2𝑛
𝑖=1             (34) 385 

https://doi.org/10.5194/egusphere-2025-453
Preprint. Discussion started: 21 March 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

𝑆𝐷𝑌 =  √
1

𝑛
∑ (𝑌𝑖 − 𝑌̅)2
𝑛
𝑖=1             (35) 

𝐿𝐶𝑆𝑦 = 𝑆𝐷𝑋𝑆𝐷𝑌(1 − 𝑐𝑜𝑟𝑟)          (36) 

Higher 𝑆𝐵𝑦 , 𝑆𝐷𝑆𝐷𝑦, and 𝐿𝐶𝑆𝑦   indicate that model failed to simulate mean of the measurement, magnitude of fluctuation 

around the mean, and pattern of fluctuation across the n measurements, respectively, of the yield. 𝑆𝐷𝑋  and 𝑆𝐷𝑌 denotes the 

standard deviation of simulated (𝑋) and observed values (𝑌), while 𝐿𝐶𝑆𝑦  depends on the correlation coefficient (corr).  390 

 

5 Model Performance Evaluation 

We calculated soybean yield in a global-scale map based on the gridded data of irrigated and rainfed area from MIRCA2000 

dataset, which represents global agricultural land use around the year 2000 (Portmann et al., 2010), to get the actual yield 

value. We evaluated yield during the period of 1981-2014 as the MIRCA dataset was available within that period. The 395 

simulated yield at the country and global scales for regional comparison was determined by aggregating grid cell data to 

compute the mean soybean harvested area within each country grid as described below in Eq (37): 

𝑌𝑖𝑒𝑙𝑑𝑟𝑒𝑔𝑖𝑜𝑛 =
∑ [(𝑌𝑖𝑒𝑙𝑑𝑟𝑓)𝑖(𝐴𝑟𝑒𝑎𝑟𝑓)𝑖+(𝑌𝑖𝑒𝑙𝑑𝑖𝑟)𝑖(𝐴𝑟𝑒𝑎𝑖𝑟)𝑖]
𝑛
𝑖=1

∑ [(𝐴𝑟𝑒𝑎𝑟𝑓)𝑖+(𝐴𝑟𝑒𝑎𝑖𝑟)𝑖]
𝑛
𝑖=1

        (37) 

where 𝑌𝑖𝑒𝑙𝑑𝑟𝑒𝑔𝑖𝑜𝑛 is the aggregated yield at a given region (country or global-scale) in kgha-1 from the grid cell number (𝑖) 

range from 1 to 𝑛 (total number of grid cells in the region). The estimated yield under rainfed and irrigated conditions are 400 

denoted by 𝑌𝑖𝑒𝑙𝑑𝑟𝑓 and 𝑌𝑖𝑒𝑙𝑑𝑖𝑟, respectively. While the soybean rainfed and irrigated area (ha) used in the simulations are 

𝐴𝑟𝑒𝑎𝑟𝑓  and 𝐴𝑟𝑒𝑎𝑖𝑟 , respectively.   

5.1 Model output yield as evaluated at the global and national scales 

Figure 5a shows a time-series comparison from 1981 to 2014 between the global mean yields reported by FAOSTAT and 

those simulated by MATCRO-Soy. The results indicated that the model captures the upwards trend in yields over the period 405 

with smaller slope compared with the reported yield data. The correlation coefficient is 0.81, which is significant (p < 0.01). 

The errors were 362 kg ha-1 and 0.15 for the RMSE and relative bias, respectively. Notably, the simulated linear increase 

contributed to the higher coefficient correlation for the yield trends. 

Figure 5b shows the comparison between the detrended global mean yield observed by FAOSTAT and the simulated value 

by MATCRO-Soy after the long-term linear trend across the study period used in the yield trend was removed. The correlation 410 

coefficient decreased to 0.512, which was significant (p < 0.01). The model reproduced the interannual variations well with 

an RMSE of 124 kg ha-1 and a relative bias of 0.37. Specifically, according to observations, there were significant yield 

reductions in the years 1983, 1988, 2009, and 2012. Among these, the model successfully reproduced the yield reductions in 

three years (1983, 1988, and 2012), excluding 2009. These years are reported to have experienced severe droughts, and the 

model's ability to capture these events is noteworthy. 415 
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Figure 5. Time-series comparison between simulated yield by MATCRO-Soy and FAOSTAT reported yield data in global long-term trend 

(a),  and detrended (b) yield during 1981-2014. The correlation for detrended yield is calculated after removing the linear trend. The symbols 

***, **, and * denote p < 0.001, 0.01, and 0.05, respectively. 420 

We evaluated the model performance for 10 major soybean-producing countries, Argentina, Brazil, China, India, Paraguay, 

United States, Italy, Russia, Bolivia, and Canada, consisting of 96% of all global soybean production (based on total average 

production from 2012 to 2021 in FAOSTAT). Figure 6 compared between the simulated country averaged yields and reported 

country averaged yields of FAOSTAT for 1981-2014 with the ellipsoid indicating the distribution of the simulated yield values 

within the 90% confidence range. The results indicate that the model reproduces the national average yield levels well in the 425 

top 10 producing countries, as indicated by a correlation coefficient of 0.502 (p < 0.001) and an RMSE of 995 kg ha-1. 

Significant correlation coefficients were observed for six countries (Argentina, Brazil, India, Italy, Paraguay, and the United 

States; see Supplementary file Figure S3 for further evaluation for these six countries). Focusing on the top three producing 

countries (the United States, Brazil, and Argentina), which account for 69% of global production, the model's accuracy further 

improves, with a correlation coefficient of 0.81 and an RMSE of 362 kg ha-1. However, when all countries are considered, the 430 

correlation coefficient decreases to 0.263, although it remains statistically significant. These results demonstrate that the model 

achieves particularly high accuracy in reproducing yields for countries with relatively high production levels. 

  
Figure 6. Comparison between simulated yield by MATCRO-Soy and FAOSTAT of the country mean yield during 1981-2014 in 10 major 

soybean producing countries. Ellipsoid shows 90% confidence range of annual yield.  435 

A time series comparison of country averaged yields focusing on the major producing countries is shown in Error! 

Reference source not found. An evaluation of the long-term trend (Figure 7a) revealed that MATCRO-Soy effectively 

captured the increasing trend. Brazil demonstrated the strongest agreement, followed by Argentina at 0.73 and the United 

States at 0.62. For detrended yield (Figure 7b), the interannual variability in Brazil presented the highest correlation coefficient 

(a) (b) 

US 

Canada 

Paraguay 
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at 0.79, followed that in the United States at 0.6 and that in Paraguay at 0.562. On the other hand, the lowest correlation was 440 

observed for China at 0.136 and Bolivia at -0.107. These findings suggest that the model tends to perform with greater accuracy 

for countries with higher production levels, even in time series comparisons at the national level. 

   

 

 445 
Figure 7. Time-series comparison between simulated yield by MATCRO-Soy (red circle) and FAOSTAT yield (open circle) in 10 top 

soybean producer countries during 1981-2014 for long-term yield trend shown by solid line (a) and detrended yield after removing the linear 

trend (b). The correlation and RMSE based on yield (a) and detrended yield (b) data. The symbols ***, **, and * denote p < 0.001, 0.01, 

and 0.05, respectively. The shading near solid line is the standard error with confidence interval of 95%. 

5.2 Temporal trends and variability 450 

Model performance was further assessed with the mean squared deviation (MSD) components for the yield and separated 

by yield, long-term yield trend, and detrended yield for both the global (Supplementary file Table S1) and country scales 

(Supplementary files Table S2, S3, and S4). Figure 8 shows the source of error based on the MSD components of squared bias 

(SB), the sum of the difference in standard deviation (SDSD), and the lack of positive correlation (LCS) in the top 6 soybean-

producing countries. SBs are the primary source of error in countries with high MSDs: Argentina, China, and Paraguay.  455 

The highest MSD in Paraguay was largely driven by SB, with a minor contribution from LCS. In contrast, the lowest MSD 

in Brazil was largely driven by SDSD and LCS. The SDSD is the primary contributor to the MSD for Brazil and the United 

States, and a small SB was observed in both countries, indicating that the model effectively simulated the mean yield but 

poorly captured the trends. These results highlighted the model strength in simulating the mean yield in the top 2 major soybean 

producing countries (Brazil and the United States) with the largest soybean-growing areas. 460 

(a) Long-term yield trend (b) Detrended yield 
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Figure 8. Mean standard deviation components of squared bias (SB), sum of difference in standard deviation (SDSD), lack of positive 

correlation (LCS) for yield error in top 6 soybean producing countries.  

5.3 Model performance at the grid-cell level variation  

We evaluated MATCRO-Soy at the grid-cell level, by comparing simulated yields with observed ones from Global Dataset 465 

of Historical Yield (GDHY) dataset by Iizumi (2019). Figure 9a and b show the simulated and observed yields averaged over 

34 years, and Figure 9c shows relative bias between them. Figure 10 shows interannual correlation between simulated and 

observed yields for 34 years. The simulated yield was calculated for soybean-growing areas from the MIRCA2000 dataset, 

which offers broad spatial coverage where yield data for certain regions, including Canada, Russia, Australia, and many 

European and Asian countries, are missing in the GDHY dataset (Iizumi and Sakai, 2020). The density plot of the simulated 470 

yield showed more variability than did the GDHY data in Figure 9. However, both datasets exhibited a density peak of 

approximately 3,000 kg ha-1and the simulated yield mostly overestimated the yield value. Figure 9 a, b, and c also show the 

distribution of simulated and observed yields. 

The relative bias map (Figure 9c) highlights that overestimation was prominent in parts of South America (particularly 

Argentina) and China, whereas underestimation was observed in South Africa and India. These results aligned with the trends 475 

observed at the national scale, which are influenced by the aggregation process. During aggregation, the national-scale results 

represented the average performance across all grid cells, weighted by the number of grids within each region. Most grids were 

within a relative bias of -0.2 to 0.2, accounting for 33 % of the total grid area. The grey area was found to be statistically 

insignificant. The density plot in simulated yield showed more variability compared to the GDHY data. However, both data 

exhibited the density peak around 3,000 kg ha-1 and simulated yield mostly overestimated the yield value. The correlation 480 

between the simulated yield and the GDHY dataset for interannual variation after removing the moving-average (Figure 10) 

reveals that 71 % of the grid cells are significantly correlated (p < 0.05).  
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 485 
Figure 9. Global map of 34-year averaged (1981-2014) yield of GDHY dataset (a), simulated by MATCRO-Soy (b), and relative bias (c) 

with each density plot distribution. In figure c, grey colour depicts the correlation with no significance (p > 0.05) in the map.  

 

(b) GDHY 

(a) MATCRO-Soy 

 

(c) Relative Bias 
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Figure 10. Time-series correlation between simulated and observed yield in 1981-2014 after removing trends from 5-year moving average 490 

(c). Grey colour depicts the correlation with no significance (p > 0.05) in the map while the red dashed line shows the border of 

p = 0.05 for the number of n year (34) in the density distribution plot. 

5.4 Model performance at the leaf-level   

We simulated the leaf-level variation in Vcmax for the United States (largest soybean producing country) at the site scale of the 

Champaign for the 2002 growing season using the global parameterization of MATCRO-Soy (Figure 11). These leaf-level 495 

simulated Vcmax values align closely with the observation data from Bernacchi et al. (2005) during the vegetative stage with 

some deviations during the flowering to seed-filling stages, as shown by the dashed line in the developmental stage of Figure 

11. This alignment highlighted the ability of the model to represent essential photosynthetic processes influenced by leaf 

nitrogen content. 

 500 
Figure 11. The maximum carboxylation capacity of Rubisco (𝜇𝑚𝑜𝑙(𝐶𝑂2)𝑚−2𝑠−1) during the growing period of simulation using 

MATCRO-Soy (black line) and observation data (grey dots) from Bernacchi et al. (2005) in Champaign (US) year 2002. 

 

6 Discussions 

6.1 Validation of MATCRO-Soy 505 

In prior studies, soybean yield predictions often faced challenges in capturing crop responses to climatic variables. The 

MATCRO-Soy model effectively captures the linear trend in soybean yields, with higher accuracy for long-term trends (corr 

= 0.81) than for detrended yields (corr = 0.512), as shown in Figure 5. This result of the global detrended yield is improved 

             Correlation  

p-value = 0.05 
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compared with that of benchmark studies conducted by Müller et al. (2017), indicating less variation among the process-based 

models based on its statistical correlation, where another crop model, PRYSBI2, reaches significant correlations of 0.57 (p < 510 

0.050) if trends are not removed. However, the accuracy is enhanced when using site-specific parameters are used, as 

demonstrated in regional scale evaluations from previous studies, which were used for parameterization in this global 

simulation (Battisti et al., 2017b; Kumagai, 2018, 2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al., 2019). These 

studies have shown that integrating factors of cultivar differences, ensembles of multiple crop models, nitrogen content, and 

more accurate measurement method allows for a more reliable representation of local growing conditions and climate 515 

variability.  

When examining the10 largest soybean-producing countries, the model performance (Figure 6) has an RMSE of 0.9 ton 

ha-1 (average yield of 34 years), which is comparable with the RMSE of another study using LPJ-GUESS coupled with 

biological nitrogen fixation (Ma et al., 2022) of approximately 0.8 ton ha-1 (average yield of 10 years). The grid-cell level 

evaluation simulated by MATCRO-Soy, as shown in Figure 9, revealed that 71% of the grid cells were significantly correlated 520 

(p < 0.05) with most grids falling within 0.2–0.6. These findings align with other studies that show that time-series correlations 

in GGCM simulated soybean yields range from 0.25 to 0.65 due to discrepancies in benchmark studies (Müller et al., 2017). 

The correlation values between yield and detrended yield in Figure 5 and Figure 6 indicate that the increased correlation 

in model performance was due to the long-term yield trend. MATCRO-Soy could capture the trend of increased atmospheric 

CO2 and nitrogen fertilizer inputs, despite of the interannual variability in climate conditions. The MSD calculation revealed 525 

that the sum of the differences in the standard deviation (SDSD) was the major contributor error in Brazil, and Italy within the 

10 top soybean producing countries (Supplementary file Table S2). Both countries have small squared biases (SBs), suggesting 

that MATCRO-Soy accurately represents the average productivity in despite of the inability to capture the variability or 

amplitude of the yield trend over time within the region. Factors such as changes in sowing date, land use, pest management, 

cultivar maturity group, and planting density may contribute to discrepancies in soybean yield under climate change (Battisti 530 

et al., 2018; Marin et al., 2022). Hence, there is a need for improved parameterization to better represent the dynamics of yield 

variability in countries such as Brazil and Italy. 

The high yields in Argentina and Paraguay reflect the consistency of favourable growing conditions (Figure 8a), 

particularly the alignment of daily temperatures and seasonal precipitation with critical growth stages, suggesting that these 

regions are less susceptible to interannual variability along with the geographic locations to receive more radiation for 535 

photosynthesis sources. The comparison of simulations and observations at the grid-cell level (Figure 11) reveals weak 

correlations with no statistical significance in high-latitude countries (e.g., Canada and Russia). The models that lack sensitivity 

to daylength are observed to contribute to more uncertainty (Battisti et al., 2018). Moreover, the low simulated yield in India, 

which has a hot climate characterized by high mean daily temperatures of 27––28 C (Supplementary file Figure S4) and low 

soil moisture during the growing season, highlights the model capacity of the model to capture regional climatic challenges 540 

that impact productivity. These climatic challenges likely exacerbate heat stress during critical phenological stages, such as 

flowering and pod development, leading to reduced yields (Sinclair, 1986; Egli and Bruening, 2004). The contrasting regions 

of high and low soybean yields underscore the ability of the model to capture the complex interplay between climate and crop 

yields across diverse agroecological zones.  

6.2 Model strength and application 545 

We developed MATCRO-Soy v.1, a process-based eco-physiological model that uses the Farquhar equation to simulate the 

leaf-level photosynthesis. The Farquhar equation is a widely recognized framework in plant physiology that simulates the 

biochemical mechanisms of photosynthesis by describing the relationships among light intensity, CO2 assimilation, and 

Rubisco enzyme activity (Farquhar et al., 1980; Scafaro et al., 2023). Through the integration of this equation into a gridded 

global crop model, MATCRO-Soy enhances the simulation of soybean growth and productivity under environmental changes 550 
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to atmospheric CO2, temperature, and water scarcity. These factors are important for predicting and understanding the 

mechanism of the impact of climate change on productivity. The calibration of MATCRO-Soy successfully represented the 

response of soybean growth to a wide range of climatic conditions, resulting in reliable global yield simulations using a single 

parameterization. While simplification may introduce errors, global tuning effectively minimizes these discrepancies in 

specific regions as this similar result also shown by Smith et al. (2014). 555 

Improving photosynthetic efficiency is one of the key improvements, particularly through enhancing stomatal conductance 

and modifying Rubisco, the enzyme responsible for carbon fixation (Xu et al., 2022). We used Vcmax as a photosynthetic 

parameter as it quantifies the Rubisco activity that is responsible for catalysing the conversion of carbon dioxide into organic 

compounds. The peak Rubisco activity observed during the reproductive stage corresponds with trends in specific leaf nitrogen 

and implicitly affected by the additional nitrogen fertilizer (Menza et al., 2023). The consideration of nitrogen fixation is 560 

important as it is sensitive to adverse environmental conditions, flooding, water deficit, and inadequate temperatures, all of 

which reduce N2 fixation (Santachiara et al., 2019).  

The simulated yield, LAI, aboveground biomass, and pod biomass from MATCRO-Soy were further compared at the point-

scale level with experimental datasets with distinct datasets used for each step of calibration and evaluation (Table 3) prior to 

global-scale evaluation (Supplementary file Figure S2). While point-scale simulations employed the unified global parameters, 565 

the results demonstrated reasonable agreement with a p value < 0.001 and a bias of 20–60 % for harvested yield, the seasonal 

leaf area index, aboveground biomass, and pod biomass. The highest bias was observed for the seasonal LAI, which aligns 

with the underestimation of Vcmax during critical growth stages. MATCRO-Soy can reproduce photosynthesis parameters 

comparable to those of the observation data in site-scale analysis with overestimation in the reproductive stage (Figure 11). 

MATCRO-Soy effectively uses high-quality climate data, soil information, and nitrogen fertilizer data to capture 570 

biophysical processes involved in soybean growth and yield formation based on previous studies. Its flexibility in spatial 

resolution enables its application across various scales, from local studies to global assessments. Moreover, the structure of 

MATCRO is easily coupled with climate models and atmospheric CO₂ to increase the accuracy of yield predictions through 

high-quality data input. This adaptability also enables integration with other land models, making it a valuable tool in both 

ecological and agricultural research. MATCRO-Soy can be continuously refined with new data and plant physiological 575 

knowledge, ensuring that it remains robust and adaptable. This adaptability makes it a valuable for researchers and policy-

makers working towards sustainable agriculture and global food security.   

Furthermore, the integration of crop models with remote sensing data will open new possibilities for monitoring and 

predicting crop productivity at finer spatial scales (Basso et al., 2001). Climate change may shift favourable conditions for 

high yields in the United States or worsen the challenge of low yields in India for producing soybean yields, making it essential 580 

for the model to project these trends accurately for future agricultural planning. In addition to climatic factors, variations in 

yield may be attributed to technological advancements, shifts in agricultural practices, and changes in crop management 

strategies that have not been considered in the model. The consideration of more detailed mechanisms of soybean growth can 

be considered for more accurate results as climate change affects the pest populations (Chen and Mccarl, 2001). However, it 

is important to acknowledge the limitations of the model, particularly its ability to predict yield variations under extreme or 585 

rapidly changing climatic conditions. Continuous updates of the experimental dataset are necessary to maintain its relevance 

and accuracy in predicting future soybean yields. 

6.3 Model challenges and future directions 

In the evaluation process, it is important to recognize the interannual variability and spatial variability. There are many grid 

cells that have a low correlation (nonsignificant) of soybean yield between the simulated and observed values in Brazil when 590 

considered in each single cell (Figure 9), but the correlation at the national-scale level is high (Figure 7). This means that local 

climatic factors affect soybean yield in Brazil. However, MATCRO-Soy is able to recognize broader regional trends leading 
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to its aim at representing yield behaviour. Figure 12 presents the relative RMSE (RMSE value compared with the observation 

value) between the simulation and GDHY datasets for the detrended yield at the grid-scale. High relative RMSE values are 

observed in some parts of South America (particularly in Argentina and Paraguay), the United States, India, and China. Lower 595 

relative RMSE values are evident in regions such as Brazil. However, low RMSEs are found in Brazil and the United States 

at the national-level, although higher relative RMSEs are found in some grid cells of the United States. Detailed information 

on the spatial variation in the error components contributors is provided in Supplementary File Figure S5 for the long-term 

yield trend and Figure S6 for the detrended yield. These findings highlighted that the number of grids significantly influences 

model performance, with regions containing fewer grids being more sensitive to localized factors and spatial heterogeneity 600 

during aggregation. These emphasize the importance of considering spatial resolution and representation when evaluating 

model performance. 

 

Figure 12. Relative RMSE calculation between simulated and observed yield for detrended yield in grid-cell level. 

Uncertainty in MATCRO-Soy is reflected through the challenges in global-scale model evaluation related to the model 605 

assumptions of crop cultivars being homogenous globally and the upscaling parameters due to the lack of parameterization, 

making it is unrealistic to reproduce the variability at the regional-scale with very high accuracy (Müller et al., 2017; Zaehle 

and Friend, 2010). This uncertainty is notably pronounced in the global aggregation of yield simulations at the grid-cell scale. 

Global aggregation can escalate substantially for specific combinations of aggregation units, crop model limitations, and years 

(Porwollik et al., 2017). Future assessments of models and projections of crop yields will require careful consideration of the 610 

significant contrast between different aggregation approaches used for individual countries or regions. To address this, we 

used harmonized ISIMIP data to minimize methodological bias and emphasize the importance of flexible model development 

for reducing uncertainty (Yin, 2013). 

We found a large underestimation in 2002, and overestimation in 2009 when comparing the soybean yield simulated using 

bias-corrected climate data was compared with FAO data (Figure 5). One possibility for these discrepancies in the interannual 615 

variability may be attributed to the influence of unaccounted extreme climatic events. Climatic events indicated by Oceanic 

Niño index, a three-month running mean of SST anomalies in the Niño 3.4 region, show that La Niña was present at the end 

of 2002 and that El Niño occurred at the end of 2009 (NOAA, 2024). Some regions within major soybean-producing countries 

are significantly affected by El Niño events, further influencing yield variability (Anderson et al., 2017; Iizumi et al., 2014). 

Another possibility for the interannual variation in MATCRO-Soy tends to overestimate the long-term yield trend because of 620 

the sensitive effect of the CO2 concentration on the carbon assimilation module.  

The simulated yield increases throughout the year, driven by the positive effects of increased atmospheric CO2, a 

phenomenon known as the CO2 fertilization effect, as observed in studies by Long et al. (2005) and Sakurai et al. (2014). 

Compared with simulations using statistical radiation use efficiency, process-based models have this tendency because of the 
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greater effect of CO2 on the photosynthesis process (Ai and Hanasaki, 2023). This result is expected, as most of the simulated 625 

yield values were overestimated compared with the reference data, except for the yield in Canada, which was due to the low-

temperature conditions.  

Comparative studies with other soybean models and refining the MATCRO-Soy on the basis of these findings will 

contribute to a more comprehensive understanding of its capabilities and limitations. Incorporating additional datasets will 

further enhance the model representation of real-world conditions. McCormick et al. (2021) suggested that integrating machine 630 

learning models could improve accuracy through the calibration process with numerous datasets. However, the use of 

mechanistic models embedded in MATCRO to simplify the process has proven valuable for understanding and predicting the 

impacts of environmental factors on agricultural systems. This model can be used to identify potential adaptation strategies, 

such as changes in planting dates or the development of new crop varieties, to mitigate the adverse effects of climate change 

on soybean production. However, the application of this model at the field-scale requires high-quality data input and local 635 

parameter data.  

7 Conclusions 

We utilize MATCRO which incorporates carbon assimilation modules based on the C3 photosynthesis of the Farquhar 

model, to simulate global soybean yield in terms of eco-physiological integrated gridded data inputs of climate, soil type, and 

nitrogen fertilizer. This study used experimental datasets and literature from previous studies to MATCRO-Soy to represent 640 

soybean growth under various environmental conditions. An evaluation of the global mean yield revealed a statistical 

correlation of 0.81 (p-value < 0.001) between the simulated and reported FAOSTAT data before the long-term yield trend was 

removed. The correlation value decreased after the long-term yield trend was removed, with a Pearson correlations of 51.2 % 

(p < 0.050), 50.2 % (p < 0.001), and 71 % grid cells statistically greater than the significant value (p > 0.05) over 34 years 

(1981-2014) for the global, top 10 countries, and grid cell levels, respectively. The model successfully captured long-term 645 

trends and interannual variability, demonstrating its capacity to reflect the impacts of climate factors. Moreover, MATCRO-

Soy also modelled reasonable photosynthetic processes in site-scale study, which shows a strong ability to represent the 

temporal variation. This result highlights the model’s reliability and adaptability as a tool for understanding soybean growth 

and yield dynamics. 

While MATCRO-Soy presents a valuable framework for understanding the impacts of climate change on global soybean 650 

production, many localized factors that influence soybean yield due to the shifts in climate (e.g., pests and diseases) can lead 

to discrepancies in yield prediction. This highlights the need for high-quality data input. The integration of CO2 dynamics in 

MATCRO enhances crop response modelling while providing the carbon fertilization effect in process-based models, 

warranting further investigation along with the effects of other greenhouse gases. The model may benefit for further refinement, 

particularly in its treatment of temperature extremes, transpirable soil water, and nitrogen uptake during the photosynthesis 655 

process. Integrating MATCRO with other environmental models would enhance its applicability in agricultural management, 

while emphasizing the necessity for field-scale calibration to improve the model's reliability. MATCRO-Soy provides an 

opportunity to estimate changes in global soybean production under future land-use or climate change scenarios to address the 

complexities of climate interactions with agricultural systems. Overall, the MATCRO-Soy has proven to be useful in 

understanding eco-physiological processes at both the global scale and the country and grid cell levels, providing valuable 660 

insights for agricultural management and climate change adaptation.  
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Code and data availability  

This study used the model simulated by source code of MATCRO (Yusara et al, 2025) archived at 

https://doi.org/10.5281/zenodo.14881385. 
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